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MODULE - 1 
 

INTRODUCTION 
 
LESSON STRUCTURE 

1.1. Introduction 
1.2. Open Loop System 
1.3. Closed loop control system 
1.4. Concepts of feedback 
1.5. Requirements of Ideal control system 
1.6. Types of controllers 

 
OBJECTIVES: 
 To teach students the characteristics of closed-loop control systems, and feedback control 
system and different types of controllers. 

 
1.1. Introduction:  

 A system is an arrangement of or a combination of different physical components connected 
or related in such a manner so as to form an entire unit to attain a certain objective. 
 Control system is an arrangement of different physical elements connected in such a manner 
so as to regulate, director command itself to achieve a certain objective 
 Any control system consists of three essential components namely input, system and output. 
The input is the stimulus or excitation applied to a system from an external energy source. A system 
is the arrangement of physical components and output is the actual response obtained from the 
system. The control system may be one of the following type. 

1) Man made 
2) Natural and / or biological and 
3) Hybrid consisting of man-made and natural or biological. 

Requirements of good control system are accuracy, sensitivity, noise, stability, bandwidth, speed, 
oscillations 
 
Types of control systems 
 Control systems are classified into two general categories based upon the control action 
which is responsible to activate the system to produce the output viz. 

1) Open loop control system in which the control action is independent of the output. 
2) Closed loop control system in which the control action is somehow dependent upon the 

output and are generally called as feedback control systems. 
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1.2. Open Loop System 
 It is a system in which control action is independent of output. To each reference input there 
is a corresponding output which depends upon the system and its operating conditions. The 
accuracy of the system depends on the calibration of the system. In the presence of noise or 
disturbances open loop control will not perform satisfactorily. 

 
 
 
 
Example: Automatic hand driver, automatic washing machine, bread toaster, electric lift, traffic 
signals, coffee server, theatre lamp etc. 
Advantages of open loop system: 
1. They are simple in construction and design. 
2. They are economic. 
3. Easy for maintenance. 
4. Not much problem of stability. 
5. Convenient to use when output is difficult to measure. 
Disadvantages of open loop system 
1. Inaccurate and unreliable because accuracy is dependent on accuracy of calibration. 
2. Inaccurate results are obtained with parameter variations, internal disturbances. 
3. To maintain quality and accuracy, recalibration of controller is necessary from time to time. 
 
 

1.3.  A closed loop control system: 
Is a system in which the control action depends on the output. In closed loop control system the 
actuating error signal, which is the difference between the input signal and the feedback signal 
(output signal or its function) is fed to the controller. 
The elements of closed loop system are command, reference input, error detector, control element 
controlled system and feedback element. 
 
 
 
 
 
 
 
Elements of closed loop system are: 
 

1. Command: The command is the externally produced input and independent of the feedback 
control system. 

2. Reference Input Element: It is used to produce the standard signals proportional to the 
command. 
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3. Error Detector: The error detector receives the measured signal and compares it with 
reference input. The difference of two signals produces error signal. 

4. Control Element: This regulates the output according to the signal obtained from error 
detector. 

5. Controlled System: This represents what we are controlling by feedback loop. 
6. Feedback Element: This element feedback the output to the error detector for comparison 

with the reference input. 
Example: Automatic electric iron, servo voltage stabilizer, sun-seeker solar system, water level 
controller, human perspiration system. 
 
Advantages of closed loop system: 

1. Accuracy is very high as any error arising is corrected. 
2. It senses changes -in output due to environmental or parametric change, internal disturbance 

etc. and corrects the same. 
3. High bandwidth. 
4. Facilitates automation. 

Disadvantages 
1. Complicated in design and maintenance costlier. 
2. System may become unstable. 

 

1.4.  Concepts of feedback: 
 Feedback system is that in which part of output is feeded back to input. In feedback system 
corrective action starts only after the output has been affected.  
 

1.5. Requirements of good control system : 
 Requirements of good control system are, 

1. Accuracy 
2. Sensitivity 
3. Noise 
4. Stability 
5. Bandwidth 
6. Speed 
7. Oscillations 

 

1.6.  Types of controllers: 
 An automatic controller compares the actual value of the system output with the reference 
input (desired value), determines the deviation, and produces a control signal that will reduce the 
deviation to zero or a small value. The manner in which the automatic controller produces the control 
signal is called the control action. The controllers may be classified according to their control actions 
as, 

1. Proportional controllers. 
2. Integral controllers. 
3. Proportional-plus- integral controllers. 
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4. Proportional-plus-derivative controllers. 
5. Proportional-plus- integral-plus-derivative controllers 

 

A proportional control system is a feedback control system in which the output forcing function is 
directly proportional to error. 

A integral control system is a feedback control system in which the output forcing function is 
directly proportional to the first time integral of error. 

A proportional-plus-derivative control system is a feedback control system in which the output 
forcing function is a linear combination of the error and its first time derivative. 

A proportional-plus- integral control system is a feedback control system in which the output 
forcing function is a linear combination of the error and its first time integral.  

A proportional-plus-derivative-plus- integral control system is a feedback control system in 
which the output forcing function is a linear combination of the error, its first time derivative and its 
first time integral. 
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OUTCOMES: 
 At the end of the unit, the students are able to:  

 Different types of control system. 
 Ideal requirements of a good control system. 
 Different types of controllers. 

 
 
SELF-TEST QUESTIONS: 

1. Define control system. 

2. Distinguish between open loop and closed loop control system with suitable example. 

3. What are the requirements of an ideal control system? Explain them. 

4. With a suitable example explain regulatory system and follow - up system. 

5. Explain the concept of feedback control system. 

6. What is control action? 

7. Explain proportional integral differential controller with the block diagram. 

8. Explain following controller. State its characteristics. 

a) Proportional plus derivative control action 

b) Proportional plus integral control action. 

 

FURTHER READING: 
1. Control engineering, Swarnakiran S, Sunstar publisher, 2018. 
2. Feedback Control System, Schaum’s series. 2001. 
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MODULE - 2 
MATHEMATICAL MODELS 

 

LESSON STRUCTURE: 

2.1. Modeling of Control Systems 
2.2. Modeling of Mechanical Systems 
2.3. Mathematical Modeling of Electrical System 
2.4. Force Voltage Analogy  
2.5. Force Current Analogy  
2.6.    Transfer Functions definition 
2.7. Block Diagram: 
2.8. Signal Flow Graphs 
2.9. Mason’s Gain Formula 

 
OBJECTIVES: 

 To develop mathematical model for the mechanical, electrical, servo mechanism and 
hydraulic systems. 

 To teach students the concepts of block diagrams and transfer functions.  
 To teach students the concepts of Signal flow graph. 

 

2.1.  Modeling of Control Systems:  

The first step in the design and the analysis of control system is to build physical and mathematical 
models. A control system being a collection of several physical systems (sub systems) which may be 
of mechanical, electrical electronic, thermal, hydraulic or pneumatic type. No physical system can 
be represented in its full intricacies. Idealizing assumptions are always made for the purpose of 
analysis and synthesis. An idealized representation of physical system is called a Physical Model. 

 Control systems being dynamic systems in nature require a quantitative mathematical 
description of the system for analysis. This process of obtaining the desired mathematical 
description of the system is called Mathematical Modeling. 

In Unit 1, we have learnt the basic concepts of control systems such as open loop and feedback 
control systems, different types of Control systems like regulator systems, follow-up systems and 
servo mechanisms. We have also discussed a few simple applications. In this chapter we learn the 
concepts of modeling. 
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 The requirements demanded by every control system are many and depend on the system 
under consideration. Major requirements are 1) Stability 2) Accuracy and 3) Speed of Response. An 
ideal control system would be stable, would provide absolute accuracy (maintain zero error despite 
disturbances) and would respond instantaneously to a change in the reference variable. Such a 
system cannot, of course, be produced. However, study of automatic control system theory would 
provide the insight necessary to make the most effective compromises so that the engineer can 
design the best possible system. One of the important steps in the study of control systems is 
modeling. Following section presents modeling aspects of various systems that find application in 
control engineering. 

 The basic models of dynamic physical systems are differential equations obtained by the 
application of appropriate laws of nature. Having obtained the differential equations and where 
possible the numerical values of parameters, one can proceed with the analysis. When the 
mathematical model of a physical system is solved for various input conditions, the results represent 
the dynamic response of the system. The mathematical model of a system is linear, if it obeys the 
principle of superposition and homogeneity. 

 A mathematical model is linear, if the differential equation describing it has coefficients, 
which are either functions of the independent variable or are constants. If the coefficients of the 
describing differential equations are functions of time (the independent variable), then the 
mathematical model is linear time-varying. On the other hand, if the coefficients of the describing 
differential equations are constants, the model is linear time-invariant. Powerful mathematical tools 
like the Fourier and Laplace transformations are available for use in linear systems. Unfortunately 
no physical system in nature is perfectly linear. Therefore certain assumptions must always be made 
to get a linear model. 

 Usually control systems are complex. As a first approximation a simplified model is built to 
get a general feeling for the solution. However, improved model which can give better accuracy can 
then be obtained for a complete analysis. Compromise has to be made between simplicity of the 
model and accuracy. It is difficult to consider all the details for mathematical analysis. Only most 
important features are considered to predict behavior of the system under specified conditions. A 
more complete model may be then built for complete analysis. 

2.2.  Modeling of Mechanical Systems:  

 Mechanical systems can be idealized as spring- mass-damper systems and the governing 
differential equations can be obtained on the basis of Newton’s second law of motion, which states 
that 

F = ma: for rectilinear motion 
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where F: Force, m: mass and a: acceleration (with consistent units) 

T = I α: or Jα for rotary motion 

where T: Torque, I or J: moment of inertia and α: angular acceleration (with consistent units) 

 Mass / inertia and the springs are the energy storage elements where in energy can be stored 
and retrieved without loss and hence referred as conservative elements. Damper represents the 
energy loss (energy absorption) in the system and hence is referred as dissipative element. 
Depending upon the choice of variables and the coordinate system, a given physical model may lead 
to different mathematical models. The minimum number of independent coordinates required to 
determine completely the positions of all parts of a system at any instant of time defines the degrees 
of freedom (DOF) of the system. A large number of practical systems can be described using a finite 
number of degrees of freedom and are referred as discrete or lumped parameter systems. Some 
systems, especially those involving continuous elastic members, have an infinite number of degrees 
of freedom and are referred as continuous or distributed systems. Most of the time, continuous 
systems are approximated as discrete systems, and solutions are obtained in a simpler manner. 
Although treatment of a system as continuous gives exact results, the analysis methods available for 
dealing with continuous systems are limited to a narrow selection of problems. Hence most of the 
practical systems are studied by treating them as finite lumped masses, springs and dampers. In 
general, more accurate results are obtained by increasing the number of masses, springs and 
dampers-that is, by increasing the number of degrees of freedom. 

Mechanical systems can be of two types: 

1) Translation Systems 
2) Rotational Systems. 

The variables that described the motion are displacement, velocity and acceleration. 

  And also we have three parameters- 

 Mass which is represented by ‘M’. 

 Coefficient of viscous friction which is represented by ‘B’. 
 Spring constant which is represented by ‘K’. 

In rotational mechanical type of systems we have three variables- 

 Torque which is represented by ‘T’. 
 Angular velocity which is represented by ‘ω’ 
 Angular displacement represented by ‘θ’ 
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 Now let us consider the linear displacement mechanical system which is shown below-  

 

spring mass mechanical system 

We have already marked various variables in the diagram itself. We have x is the displacement as 
shown in the diagram. From the Newton’s second law of motion, we can write force as 

 

From the diagram we can see that the, 

F = F1+F2+F3 

On substituting the values of F1, F2 and F3 in the above equation and taking the Laplace transform 
we have the transfer function as, 

 

2.3.  Mathematical Modeling of Electrical System: 

In electrical type of systems we have three variables - 

 Voltage which is represented by ‘V’. 

 Current which is represented by ‘I’. 
 Charge which is represented by ‘Q’. 

And also we have three parameters which are active and passive elements – 

 Resistance which is represented by ‘R’. 

 Capacitance which is represented by ‘C’. 

 Inductance which is represented by ‘L’. 
 Now we are in condition to derive analogy between electrical and mechanical types of 
systems. There are two types of analogies and they are written below: 
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2.4.  Force Voltage Analogy : 

In order to understand this type of analogy, let us consider a circuit which consists of series 
combination of resistor, inductor and capacitor.  

 

 A voltage V is connected in series with these elements as shown in the circuit diagram. Now 
from the circuit diagram and with the help of KVL equation we write the expression for voltage in 
terms of charge, resistance, capacitor and inductor as, 

 

Now comparing the above with that we have derived for the mechanical system we find that- 

1. Mass (M) is analogous to inductance (L). 
2. Force is analogous to voltage V. 
3. Displacement (x) is analogous to charge (Q). 
4. Coefficient of friction (B) is analogous to resistance R and 
5. Spring constant is analogous to inverse of the capacitor (C). 

This analogy is known as force voltage analogy. 

2.5.  Force Current Analogy :  
 In order to understand this type of analogy, let us consider a circuit which consists of parallel 
combination of resistor, inductor and capacitor. 
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 A voltage E is connected in parallel with these elements as shown in the circuit diagram. 
Now from the circuit diagram and with the help of KCL equation we write the expression for current 
in terms of flux, resistance, capacitor and inductor as, 

 

Now comparing the above with that we have derived for the mechanical system we find that, 

1. Mass (M) is analogous to Capacitor (C). 
2. Force is analogous to current I. 
3. Displacement (x) is analogous to flux (ψ). 
4. Coefficient of friction (B) is analogous to resistance 1/ R and 
5. Spring constant K is analogous to inverse of the inductor (L). 

This analogy is known as force current analogy. 
 

2.6.  Transfer Functions definition 

 The transfer function of a control system is defined as the ration of the Laplace transform of 
the output variable to Laplace transform of the input variable assuming all initial conditions to be 
zero. 

 
 
2.7. Block Diagram: 

A control system may consist of a number of components. In order to show the functions 
performed by each component in control engineering, we commonly use a diagram called the 
Block Diagram. 

 A block diagram of a system is a pictorial representation of the function performed by 
each component and of the flow of signals. Such a diagram depicts the inter-relationships which 
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exists between the various components. A block diagram has the advantage of indicating more 
realistically the signal flows of the actual system. 

In a block diagram all system variables are linked to each other through functional 
blocks. The ―Functional Block or simply ―Block is a symbol for the mathematical operation on 
the input signal to the block which produces the output. The transfer functions of the components 
are usually entered in the corresponding blocks, which are connected by arrows to indicate the 
direction of flow of signals. Note that signal can pass only in the direction of arrows. Thus a 
block diagram of a control system explicitly shows a unilateral property. 

Block diagram of a closed loop system. 
 

 

 The output C(s) is fed back to the summing point, where it is compared with reference 
input R(s). The closed loop nature is indicated in fig1.3. Any linear system may be represented 
by a block diagram consisting of blocks, summing points and branch points. A branch is the 
point from which the output signal from a block diagram goes concurrently to other blocks or 
summing points. 

When the output is fed back to the summing point for comparison with the input, it is 
necessary to convert the form of output signal to that of he input signal. This conversion is 
followed by the feedback element whose transfer function is H(s) as shown in fig 1.4. Another 
important role of the feedback element is to modify the output before it is compared with the 
input. 

The ratio of the feedback signal B(s) to the actuating error signal E(s) is called the open loop 

transfer function. 

Open loop transfer function = B(s)/E(s) = G(s)H(s) 

The ratio of the output C(s) to the actuating error signal E(s) is called the feed forward 

transfer function. 

Feed forward transfer function = C(s)/E(s) = G(s) 

If the feedback transfer function is unity, then the open loop and feed forward transfer 

function are the same. For the system shown in Fig1.4, the output C(s) and input R(s) are related 
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as follows. 

C(s) = G(s) E(s) 

E(s) = R(s) - B(s) 

= R(s) - H(s) C(s)  

But B(s) = H(s) C(s)  

Eliminating E(s) from these equations 

C(s) = G(s) [R(s) - H(s) C(s)] 

C(s) + G(s) [H(s) C(s)] = G(s) R(s) 

C(s)[1 + G(s)H(s)] = G(s)R(s) 
 

C(s) G(s) 
= 

R(s) 1 + G(s) H(s) 
C(s)/R(s) is called the closed loop transfer function. 

 
The output of the closed loop system clearly depends on both the closed loop transfer 

function and the nature of the input. If the feedback signal is positive, then 

C(s) G(s) 
= 

R(s) 1 - G(s) H(s) 

 
2.8. SIGNAL FLOW GRAPHS 

 
 An alternate to block diagram is the signal flow graph due to S. J. Mason. A signal flow 
graph is a diagram that represents a set of simultaneous linear algebraic equations. Each signal 
flow graph consists of a network in which nodes are connected by directed branches. Each node 
represents a system variable, and each branch acts as a signal multiplier. The signal flows in 
the direction indicated by the arrow. 
 
Definitions: 
 
Node: A node is a point representing a variable or signal. 
Branch: A branch is a directed line segment joining two nodes. 
Transmittance: It is the gain between two nodes. 
Input node:  A node that has only outgoing branches. It is also, called as source and corresponds 
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          to independent variable. 
Output node:  A node that has only incoming branches. This is also called as sink and 

Corresponds to dependent variable. 
Mixed node: A node that has incoming and outgoing branches. 
Path: A path is a traversal of connected branches in the direction of branch arrow. 
Loop: A loop is a closed path. 
Self loop: It is a feedback loop consisting of single branch. 
Loop gain: The loop gain is the product of branch transmittances of the loop. 
Non-touching loops: Loops that do not possess a common node. 
Forward path: A path from source to sink without traversing an node more than once. 
Feedback path: A path which originates and terminates at the same node. 
Forward path gain: Product of branch transmittances of a forward path. 
 
Properties of Signal Flow Graphs: 

1. Signal flow applies only to linear systems. 
2. The equations based on which a signal flow graph is drawn must be algebraic equations 

in       the       form       of       effects       as        a        function        of        causes. Nodes 
are used to represent variables. Normally the nodes are arranged left to right, 
following a succession of causes and effects through the system. 

3. Signals travel along the branches only in the direction described by the arrows of the 
branches. 

4. The branch directing from node Xk to Xj represents dependence of the variable Xj on Xk 

but not the reverse. 
5. The signal traveling along the branch Xk  and Xj  is multiplied by branch gain akj  and 

signal akjXk is delivered at node Xj. 
 
Guidelines to Construct the Signal Flow Graphs: 
 
 The signal flow graph of a system is constructed from its describing equations, or by 
direct reference to block diagram of the system. Each variable of the block diagram becomes a 
node and each block becomes a branch. The general procedure is 
 

1. Arrange the input to output nodes from left to right. 
2. Connect the nodes by appropriate branches. 
3. If the desired output node has outgoing branches, add a dummy node and a unity 

gain branch. 
4. Rearrange the nodes and/or loops in the graph to achieve pictorial clarity. 

 
2.9.  Mason’s Gain Formula: 

 The relationship between an input variable and an output variable of a signal flow graph is 
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 k     k 

given by the net gain between input and output nodes and is known as overall gain of the system. 
Masons gain formula is used to obtain the overall gain (transfer function) of signal flow graphs. 
 

Gain P is given by 

P 
1 
P 

k 
 
 

Where, Pk is gain of kth forward path, 
              ∆ is determinant of graph 

 
∆=1-(sum of all individual loop gains) + (sum of gain products of all possible combinations 

of two non touching loops – sum of gain products of all possible combination of three 

non touching loops) + ∙∙∙ 

 

∆k is cofactor of kth forward path determinant of graph with loops touching kth forward path. It 

isobtained from ∆ by removing the loops touching the path Pk. 

 
Example 1 
Obtain the transfer function of C/R of the system whose signal flow graph is shown in Figure 

 
 
 

 
 

  
 

 
 
 

 

 
 
 
 
 
 
 
Solution: 
 
There are two forward paths: 
Gain of path 1 : P1=G1 

Gain of path 2 : P2=G2 

R 
G1 

G2 

-G3 

G4 

C 1 1 
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There are four loops with loop gains: 
L1=-G1G3, L2=G1G4, L3= -G2G3, L4= G2G4 

There are no non-touching loops. 
∆ = 1+G1G3-G1G4+G2G3-G2G4 

Forward paths 1 and 2 touch all the loops. Therefore, ∆1= 1, ∆2= 1 
 

Cs  P11  P2  2 G1  G2 

The transfer function T = Rs
 




1 G G  G G  G G  G G 
1    3 1     4 2     3 2     4 

 
 

Example 2 
Obtain the transfer function of C(s)/R(s) of the system whose signal flow graph is shown in 
Figure 

 
 
 

 
 
 

There is one forward path, whose gain is:  P1=G1G2G3 

There are three loops with loop gains: 
L1=-G1G2H1,  
L2=G2G3H2, 
L3= -G1G2G3 

There are no non-touching loops. 
∆ = 1-G1G2H1+G2G3H2+G1G2G3 

Forward path 1 touches all the loops. Therefore, ∆1= 1. 

The transfer function T = 
Cs  
Rs




 

 

 

P11 



 


  

-H2 

R(s) 
1 1 G1 G2 G3 1 C(s) 

H1 

-1 
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OUTCOMES: 

At the end of the unit, the students are able to:  

 Mathematical modeling of mechanical, electrical, servo mechanism and hydraulic systems. 

 To find Transfer function of a system. 

 Calculate the gain of the system using block diagram and signal flow graph and to illustrate 

the response of systems. 

 
SELF-TEST QUESTIONS: 

1. What mathematical model permits easy interconnection of physical systems? 

2. Define the transfer function. 

3. What are the component parts of the mechanical constants of a motor‘s transfer function? 

4. Derive the transfer function of a Spring - Mass-Damper – system. 

5. Differentiate between FI and FV analogy. 

6. Obtain Transfer function of Armature controlled DC motor. 

7. Derive transfer function for the Electrical system shown in Figure below. 

 
 

8. Differentiate between Block diagram and Signal flow graph techniques. 

9. Explain the rules for constructing Signal flow graph. 

10. Reduce the block diagram shown in Figure 1, to its simplest possible form and find its 
closed loop transfer function. 

 
Figure 1 
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11. Find C(S)/R(S) for the following system using Mason’s gain rule shown in figure 2. 

Figure 2 
 
 
FURTHER READING: 

1. Control engineering, Swarnakiran S, Sunstar publisher, 2018. 

2. Feedback Control System, Schaum’s series. 2001. 
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MODULE - 3 
 

TRANSIENT AND STEADY STATE RESPONSE ANALYSIS 
 
 

LESSON STRUCTURE: 

3.1. Introduction 
3.2. Time Response 
3.3. Steady State Response 
3.4. Routh’s-Hurwitz Criterion 
3.5.  Definition of root loci 
3.6. Analysis using root locus plots 
3.7. General rules for constructing root loci 
 

 
OBJECTIVES: 

 To analyse stability in complex domain and frequency domain systems. 
 To educate static and transient behavior of a system. 
 To demonstrate stability of the various control systems by applying Routh’s stability criterion. 
 To study stability by using Root locus plots. 

 

3.1. Introduction: 
 

Time is used as an independent variable in most of the control systems. It is important to 
analyse the response given by the system for the applied excitation, which is function of time. 
Analysis of response means to see the variation of output with respect to time. The output behavior 
with respect to time should be within these specified limits to have satisfactory performance of the 
systems. The stability analysis lies in the time response analysis that is when the system is stable 
output is finite 

The system stability, system accuracy and complete evaluation is based on the time response 
analysis on corresponding results. 

 

3.2. Time Response: 
The response given by the system which is function of the time, to the applied excitation is called 
time response of a control system. 

 Practically, output of the system takes some finite time to reach to its final value. This time varies 
from system to system and is dependent on different factors. The factors like friction mass or inertia of 
moving elements some nonlinearities present etc. Example: Measuring instruments like Voltmeter, 
Ammeter. 
 
Classification: 

The time response of a control system is divided into two parts. 
 

1 Transient response ct(t) 
2 Steady state response css(t) 



Control Engineering -15ME73 2018 
 

20  

 

 . . . c(t)=ct(t) +cSS(t) 
Where c(t)= Time Response  
Total Response=Zero State Response +Zero Input Response. 
 

3.3. Steady State Response: 
 

It is defined the part of the response which remains after complete transient response 
vanishes from the system output. 

.  i,e, Lim ct(t)=css(t) 
t   

 
The time domain analysis essentially involves the evaluation of the transient and 

Steady state response of the control system. 
For the analysis point of view, the signals, which are most commonly used as 

reference inputs, are defined as standard test inputs. 

 

The performance of a system can be evaluated with respect to these test signals. 
Based on the information obtained the design of control system is carried out. The 
commonly used test signals are  
1. Step Input signals.  
2. Ramp Input Signals.  
3. Parabolic Input Signals.  
4. Impulse input signal. 

 

 

1. Step input signal (position function)  
It is the sudden application of the input at a specified time as usual in the figure or instant any us 
change in the reference input 
Example :-  

a. If the input is an angular position of a mechanical shaft a step input represent the sudden 
rotation of a shaft. 

b. Switching on a constant voltage in an electrical circuit. 
c.  Sudden opening or closing a valve. 
 

 
 

The step is a signal who‘s value changes from 1 value (usually 0) to another level A in Zero 

time. 
In the Laplace Transform form R(s) = A / S 
Mathematically r(t) = u(t) 

= 1 for t > 0 
= 0 for t < 0 

2. Ramp Input Signal (Velocity Functions): 
 It is constant rate of change in input that is gradual application of input as shown in fig (2 b). 
r(t) 
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Ex:- Altitude Control of a Missile 

 
The ramp is a signal, which starts at a value of zero and increases linearly with time. 
Mathematically r (t) = At for t ≥ 0 
           = 0 for t≤ 0. 
In LT form R(S) = A 
        S2 
If A=1, it is called Unit Ramp Input 
 
Parabolic Input Signal (Acceleration function): 

 The input which is one degree faster than a ramp type of input as shown in fig (2 c) or it is an 
integral of a ramp. 

 Mathematically a parabolic signal of magnitude 

 
Impulse Input Signal : 

 
 It is the input applied instantaneously (for short duration of time ) of very high amplitude as 
shown in fig 2(d) 
Eg: Sudden shocks i e, HV due lightening or short circuit. 
     It is the pulse whose magnitude is infinite while its width tends to zero. 

 
Area of impulse = Its magnitude  

If area is unity, it is called Unit Impulse Input denoted as (t) 
Mathematically it can be expressed as 

r(t) = A for t = 0 
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= 0 for t ≠ 0 

In LT form R(S) = 1 if A = 1 

 
3.4. Routh’s-Hurwitz Criterion 

 E.J. Routh (1877) developed a method for determining whether or not an equation has roots 
with + ve real parts without actually solving for the roots. 
 A necessary condition for the system to be STABLE is that the real parts of the roots of the 
characteristic equation have - ve real parts. This insures that the impulse response will decay 
exponentially with time. 
 If the system has some roots with real parts equal to zero, but none with +ve real parts the 
system is said to be MARGINALLY STABLE. 
 It determines the poles of a characteristic equation with respect to the left and the right half 
of the S-plane without solving the equation. 
 The roots of this characteristic equation represent the closed loop poles. The stability of the 
system depends on these poles. The necessary, but not sufficient conditions for the system having no 
roots in the right half S-Plane are listed below. 

i. All the co-efficients of the polynomial must have the same sign. 
ii. All powers of S, must present in descending order. 

iii. The above conditions are not sufficient. 
In a vast majority of practical systems. The following statements on stability are quite useful.  
 

i. If all  the  roots  of the  characteristic  equation  have  –ve  real parts  the  system  is 
STABLE. 

ii. If any root of the characteristic equation has a +ve real part or if there is a repeated root on 
the j -axis, the system is unstable. 

iii. If condition (i) is satisfied except for the presence of one or more non repeated roots on the j -
axis the system is limitedly STABLE 

 
 In this instance the impulse response does not decay to zero although it is bounded. 
Additionally certain inputs will produce outputs. Therefore marginally stable systems are 
UNSTABLE. 

 The Routh Stability criterion is a method for determining system stability that can be applied 
to an nth order characteristic equation of the form  

sn + an-1 sn-1 + an-2 sn-2 + an-3 sn-3 +…………. a1 s
1 + a0 = 0 

The criterion is applied through the use of a Routh Array (Routh table) Defined as follows: 
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The ROUTH STABILITY CRITERION is stated as follows, 
 All the terms in the first column of Routh’s Array should have same sign, and there should  
not be any change of sign. 
This is a necessary and sufficient condition for the system to be stable. On the other hand any change 
of sign in the first column of Routh’s Array indicates, 
 

i. The System is Unstable, and 
ii. The Number of changes of sign gives the number of roots lying in the right half of S-Plane 

 

 
Example : find the stability of the system using Routh’s criteria. For the equation   

 3S4+10S3+5S2+5S+2=0 

 
 Here two roots are +ve (2 changes of sign) and hence the system is unstable. 
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3.5.  Definition of root loci 
 The root locus of a feedback system is the graphical representation in the complex s-
plane of the possible locations of its closed-loop poles for varying values of a certain system 
parameter. The points that are part of the root locus satisfy the angle condition. The value of 
the parameter for a certain point of the root locus can be obtained using the magnitude 
condition. 
 In root locus technique in control system we will evaluate the position of the roots, 

their locus of movement and associated information. These information will be used to 
comment upon the system performance. 
 

3.6. Analysis using root locus plots. 
 
A designer can determine whether his design for a control system meets the specifications if 
he knows the desired time response of the controlled variable. By deriving the differential 
equations for the control system and solving them, an accurate solution of the system's 
performance can be obtained, but this approach is not feasible for other than simple systems. 
It is not easy to determine from this solution just what parameters in the system should be 
changed to improve the response. A designer wishes to be able to predict the performance by 
an analysis that does not require the actual solution of the differential equations.  

 
The first thing that a designer wants to know about a given system is whether or not it is 
stable. This can be determined by examining the roots obtained from the characteristic 
equation 

 

(3.1) 
 
 

 

of the closed loop. The work involved in determining the roots of this equation can be 
avoided by applying the Hurwitz or Routh criterion. Determining in this way whether the 
system is stable or unstable does not satisfy the designer, because it does not indicate the 
degree of stability of the system, i.e., the amount of overshoot and the settling time of the 
controlled variable for a step input. Not only must the system be stable, but the overshoot 
must be maintained within prescribed bounds and transients must die out in a sufficiently 
short time. 
 
The root-locus method described in this section not only indicates whether a system is stable 
or unstable but, for a stable system, also shows the degree of stability. The root locus is a plot 
of the roots of the characteristic equation of the closed loop as a function of the gain. This 
graphical approach yields a clear indication of the effect of gain adjustment with relatively 
small effort. 

 
With this method one determines the closed-loop poles in the plane - these are the roots of 
Eq.(5.1) - by using the known distribution of the poles and zeros of the open-loop transfer  

function . If for instance a parameter is varied, the roots of the characteristic equation 
will move on certain curves in the plane as shown by the example in Figure 3.1. On these 
curves lie all 



Control Engineering -15ME73 2018 
 

25  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.1: Plot of all roots of the characteristic equation for .  

Values of are red and underlined. 
 
possible roots of the characteristic equation for all values of the varied parameter from zero to 
infinity. These curves are defined as the root-locus plot of the closed loop. Once this plot is 
obtained, the roots that best fit the system performance specifications can be selected. 
Corresponding to the selected roots there is a required value of the parameter which can be 
determined from the plot. When the roots have been selected, the time response can be 
obtained. Since the process of finding the root locus by calculating the roots for various 
values of a parameter becomes tedious, a simpler method of obtaining the root locus is 
desired. The graphical method for determining the root-locus plot is shown in the following. 
 
An open-loop transfer function with poles at the origin of the plane is often described by 
 

 

(3.2) 
 
 
 
 

where is the gain of the open loop. In order to represent this transfer function in terms of 
the open-loop poles and zeros it is rewritten as 
 
 
 

(3.3) 
or 
 
 
 
 

(3.4) 
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with and . The relationship between the factor and the open-loop gain 
is 
 
 
 
 

(3.5) 
 
 
 
 
 
 
 
The characteristic equation of the closed loop using Eq. (5.3) is 
 

(3.6) 
or 
 

(3.7) 
 
 
 
 

All complex numbers , which fulfil this condition for , represent the 
root locus. 
 

From the above it can be concluded that the magnitude of must always be unity and its 
phase angle must be an odd multiple of . Consequently, the following two conditions are 

formalised for the root locus for all positive values of from zero to infinity: 
 
a)  

Magnitude condition: 
 

(3.8) 
 
b)  

Angle condition 
 

(3.9) 
for 

 
 

 

In a similar manner, the conditions for negative values of ( ) can be 
determined. The magnitude conditions is the same, but the angle must satisfy the 

c)  
Angle condition 

 
(3.10) 

for 
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Apparently the angle condition is independent of . All points of the plane that fulfil the 

angle condition are the loci of the poles of the closed loop by varying . The calibration of  

the curves by the values of is obtained by the magnitude condition according to Eq. 8(3.8). 
Based upon this interpretation of the conditions the root locus can constructed in a 
graphical/numerical way. 
 

Once the open-loop transfer function has been determined and put into the proper form, 
the poles and zeros of this function are plotted in the plane. 
 

 The plot of the locus of the closed loop poles as a function of the open loop gain K, 
when K is varied from 0 to +00.


 When system gain K is varied from 0 to +oo, the locus is called direct root locus.


 When system gain K is varied from -oo to 0, the locus is called as inverse root locus.
 The root locus is always symmetrical about the real axis i.e. x-axis.


 The number of separate branches of the root locus equals either the number of open 

loop poles are number of open-loop zeros whichever is greater.


 A section of root locus lies on the real axis if the total number of open-loop poles and 
zeros to the right of the section is odd.



 If the root locus intersects the imaginary axis then the point of intersection are 
conjugate. From the open loop complex pole the root locus departs making an angle 
with the horizontal line.


 The root locus starts from open-loop poles.


 The root locus terminates either on open loop zero or infinity. 


 The number of branches of roots locus are:

 

         N if P>Z 
and M if P<Z  

where N —> No. of poles ‗P‘ 

M —> No. of zeros ‗Z‘ 
 
 
 

 Centroid is the centre of asymptotes. It is given by (an)









 Angle of asymptotes is denoted by ‗p
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 Angle of departure is. tangent to root locus at complex pole
 
 
 
 
 
 
 
 
 
 
 
 
Based on the pole and zero distributions of an open-loop system the stability of the closed-
loop system can be discussed as a function of one scalar parameter. The root-locus method 
shown in this module is a technique that can be used as a tool to design control systems. The 
basic ideas and its relevancy to control system design are introduced and illustrated. Ten 
general rules for constructing root loci for positive and negative gain are shortly presented 
such that they can be easily applied. This is demonstrated by some discussed examples, by a 
table with sixteen examples and by a comprehensive design of a closed-loop system of higher 
order.
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Example Problems: 

 

Q.1. Consider the example 
 
 
 
 
 
 
 

with , and . The poles of the closed-loop transfer function 
 
 
 
 
 
 
 

are the roots and of the characteristic equation 
 
 
 
 
 
 
and are given by 
 
 
 
 
 
 

As and it can be seen that for the poles of the closed loop 

transfer function are identical with those of the open-loop transfer function . For other  

values the following two cases are considered: 
a)  

: Both roots and  are  real  and lie on the real axis in the range of  

and ;  
b)  

: The roots and are conjugate complex with the real part ,  

which does not depend on , and the imaginary part Im . 
The curve has two branches as shown in Figure 6.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.2: Root locus of a simple second-order system 
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At is the breakaway point of the two branches. Checking the angle 
condition the condition 
 
 
 
 
 

 

must  be  valid.  The  complex  numbers  and  have  the  angles  and  and  the  

magnitudes and . The triangle ( ) in Figure 6.2 yields the angle 
condition. Evaluating the magnitude condition according to Eq. (6.8) 
 
 
 
 

 

one obtains the value on the root locus. E.g. for the gain of the open loop is 
 
 
 

 

The value of at the breakaway point is 
 
 
Table 5.1 shows further examples of some 1st- and 2nd-order systems. 
 

Table 5.1: Root loci of 1st- and 2nd-order systems 
 

    

 root locus  root locus 
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3.7.  General rules for constructing root loci 
 

To facilitate the application of the root-locus method for systems of higher order than 2nd, 
rules can be established. These rules are based upon the interpretation of the angle condition 
and the analysis of the characteristic equation. The rules presented aid in obtaining the root 
locus by expediting the manual plotting of the locus. But for automatic plotting using a 
computer these rules provide checkpoints to ensure that the solution is correct. 

 
Though the angle and magnitude conditions can also be applied to systems having dead time, 
in the following we restrict to the case of the open-loop rational transfer functions according 
to Eq. (3.3) 
 

 
(3.11) 

 
 
 

 
or 
 

(3.12) 
 
 

As this transfer function can be written in terms of poles and zeros and ( ; 

) can be represented by their magnitudes and angles 
 
 
 
 
 
 
 
or 
 
 
 

(3.13) 
 
 
 
 
 
 
From Eq. (3.8) the magnitude condition 
 

 

(3.14) 
 
 
 
 

 

and from Eq. (3.9) the angle condition 

 

(3.15)  
for 

 



Control Engineering -15ME73 2018 
 

27  

 

 

 

follows. Here and denote the angles of the complex values and , 
respectively. All angles are considered positive, measured in the counterclockwise sense. If 
for each point the sum of these angles in the plane is calculated, just those particular points 
that fulfil the condition in Eq. (3.15) are points on the root locus. This principle of 
constructing a root-locus curve - as shown in Figure 3.3 - is mostly used for automatic root-
locus plotting. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.3: Pole-zero diagram for construction of the root locus 

 

In the following the most important rules for the construction of root loci for are listed: 

 

Rule 1 Symmetry  
As all roots are either real or complex conjugate pairs so that the root locus is 

symmetrical to the real axis.  
Rule 2 Number of branches  

The number of branches of the root locus is equal to the number of poles of the 
open-loop transfer function.  

Rule 3 Locus start and end points  

The locus starting points ( ) are at the open-loop poles and the locus ending  

points ( ) are at the open-loop zeros. branches end at infinity. The 
number of starting branches from a pole and ending branches at a zero is equal to the 
multiplicity of the poles and zeros, respectively. A point at infinity is considered as an  

equivalent zero of multiplicity equal to .  
Rule 4 Real axis locus  

If the total number of poles and zeros to the right of a point on the real axis is odd, 
this point lies on the locus.  

Rule 5 Asymptotes  

There are asymptotes of the root locus with a slope of 
 

(3.16) 
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For  and  4  one  obtains  the  asymptote  configurations  as  shown  in  
Figure 3.4. 

 
 
 
 
 
 
 
 

 

Figure 5.4: Asymptote configurations of the root locus 
 
 

 

Rule 6 Real axis intercept of the asymptotes  

The real axis crossing of the asymptotes is at 
 

(3.17) 
 
 
 

 

Rule 7 Breakaway and break-in points on the real axis  

At least one breakaway or break-in point exists if a branch of the root 
locus is on the real axis between two poles or zeros, respectively. Conditions to find 
such real points are based on the fact that they represent multiple real roots. In 
addition to the characteristic equation  for multiple roots the condition 

 
(3.18) 

 
 
 
 

must be fulfilled, which is equivalent to 

 
(3.19) 

 
 
 

 

for . If there are no poles or zeros, the corresponding sum is zero. 
 
Rule 8 Complex pole/zero angle of departure/entry  

The angle of departure of pairs of poles with multiplicity is 
 

 
(3.20) 

 
 
 
 

 

and the angle of entry of the pairs of zeros with multiplicity  
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(3.21) 

 
 
 
 

 

Rule 9 Root-locus calibration  

The labels of the values of can be determined by using 
 

 

(3.22) 
 
 
 
 

 

For the denominator is equal to one.  
Rule 10 Asymptotic stability  

The closed loop system is asymptotically stable for all values of for which the 
locus lies in the left-half plane. From the imaginary-axis crossing points the critical 

values can be determined. 
 

The rules shown above are for positive values of . According to the angle condition of  

Eq. (5.10) for negative values of some rules have to be modified. In the following these 
rules are numbered as above but labelled by a *. 
 
Rule 3* Locus start and end points  

The locus starting points ( ) are at the open-loop poles and the locus ending  

points ( ) are at the open-loop zeros. branches end at infinity. The 
number of starting branches from a pole and ending branches at a zero is equal to the 
multiplicity of the poles and zeros, respectively. A point at infinity is considered as an  

equivalent zero of multiplicity equal to .  
Rule 4* Real axis locus  

If the total number of poles and zeros to the right of a point on the real axis is even 
including zero, this point lies on the locus.  

Rule 5* Asymptotes  

There are asymptotes of the root locus with a slope of 
 

(3.23) 
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Rule 8* Complex pole/zero angle of departure/entry  

The angle of departure of pairs of poles with multiplicity is 
 

 
(3.24) 

 
 
 
 

 

and the angle of entry of the pairs of zeros with multiplicity  
 

 
(3.25) 

 
 
 
 
 
 
 

The root-locus method can also be applied for other cases than varying . This is possible as  

long as can be rewritten such that the angle condition according to Eq. (3.15) and the 
rules given above can be applied. This will be demonstrated in the following two examples. 
 
Q.2. Given the closed-loop characteristic equation 
 
 
 
 
 
 

the root locus for varying the parameter is required. The characteristic equation is therefore 
rewritten as 
 
 
 

 

This form then correspondents to the standard form 
 
 
 
 
 
 
 
to which the rules can be applied.  

 

Q.3.Given the closed-loop characteristic equation 
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it is required to find the effect of the parameter on the position of the closed-loop poles. The 
equation is rewritten into the desired form 
 
 
 
 
 
Using the rules 1 to 10 one can easily predict the geometrical form of the root locus based on 
the distribution of the open-loop poles and zeros. Table 3.2 shows some typical distributions 
of open-loop poles and zeros and their root loci. 

 

Table 3.2: Typical distributions of open-loop poles and zeros and the root loci 
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For the qualitative assessment of the root locus one can use a physical analogy. If all open-
loop poles are substituted by a negative electrical charge and all zeros by a commensurate 
positive one and if a massless negative charged particle is put onto a point of the root locus, a 
movement is observed. The path that the particle takes because of the interplay between the 
repulsion of the poles and the attraction of the zeros lies just on the root locus. Comparing the 
root locus examples 3 and 9 of Table 3.2 the 'repulsive' effect of the additional pole can be 
clearly seen. 
 
The systematic application of the rules from section 3.2 for the construction of a root locus is 
shown in the following non-trivial example for the open-loop transfer function 
 

 

(3.26) 
 
 
 

 
The degree of the numerator polynomial is . This means that the transfer function has 

one zero ( ). The degree of the denominator polynomial is and we have the  

four poles ( , , , 2). First the poles (x) and the 
zeros (o) of the open loop are drawn on the plane as shown in Figure 3.5. According to rule 
3 these poles are just 
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Figure  3.5:  Root  locus  of .  Values  of are  in  red and 

underlined.    

those  points  of  the  root  locus  where and  the  zeros  where .  We have  

branches that go to infinity and the asymptotes of these three branches are lines 
which intercept the real axis according to rule 6. From Eq. (3.17) the crossing is at 
 

(3.27) 
 
 
 
 
and the slopes of the asymptotes are according to Eq. (3.16) 
 

(3.28) 
 

i.e.  
 
 

 
The asymptotes are shown in Figure 3.5 as blue lines. Using Rule 4 it can be checked which 

points on the real axis are points on the root locus. The points with and  

belong to the root locus, because to the right of them the number of poles and zeros is 
odd. According to rule 7 breakaway and break-in points can only occur pairwise on the real 
axis to the left of -2. These points are real solutions of the Eq. (3.19). Here we have 
 

(3.29) 
 
 
 
 
or 
 
 
 
 
 
 

This equation has the solutions , and . The real 

roots and are the positions of the breakaway and the break-in point. 

The angle of departure of the root locus from the complex pole at can be 
determined from Figure 3.6 according to Eq. (3.20): 
 

(3.30) 
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Figure 5.6: Calculating the angle of departure of the complex pole  
 

With this specifications the root locus can be sketched. Using rule 9 the value of can be 
determined for some selected points. The value at the intersection with the imaginary axis is 
 
 
 
 
 
 
 
OUTCOMES: 

At the end of the module, the students are able to:  
 Obtain the time response and steady-state error of the system. 
 Knowledge about improvement of static and transient behaviour of a system. 
 Determine stability of the various control systems by applying Routh’s stability 

criterion. 
 Construct root loci from open loop transfer functions of control systems and Analyze 

the behaviour of roots with system gain. 
 Assess the stability of closed loop systems by means of the root location in s-plane and 

their effects on system performance. 
 

 
SELF-TEST QUESTIONS: 

1. Obtain an expression for time response of the first order system subject to step input. 
2. Define 

1) Time response. 
2) Transient response. 
3) Steady state response. 
4) Steady state error. 

3. Determine the stability of the system whose characteristic equation is given by  
S4+6S3+23S2+40S+50=0,  Using Routh's criterion. 

4. Sketch the root locus for G(S)H(S)=            K  show all details on it.                                                   
     S(S+2)(S+4) 

5. Sketch the root locus for G(S)H(S)=            10K  show all details on it.                                                   
     S(S+2)(S+6) 
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6. Sketch the root locus for G(S)H(S)=            K(S+1)  show all details on it.                                                   
     S(S+2)(S+4) 
 

FURTHER READING: 
1. Control engineering, Swarnakiran S, Sunstar publisher, 2018. 

2. Feedback Control System, Schaum’s series. 2001. 
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MODULE 4 
 

FREQUENCY DOMAIN ANALYSIS 
 

LESSON STRUCTURE 
4.1.  Nyquist Stability criterion 
4.2.  Nyquist criterion using Nyquist plots 
4.3.  Simplified forms of the Nyquist criterion 
4.4.  The Nyquist criterion using Bode plots 
4.5.  Bode attenuation diagrams 
4.6. Stability analysis using Bode plots 
 

 
OBJECTIVES: 
 

 To demonstrate Stability Determine Gain & Phase Margins Medium effort. 
 To demonstrate applications of the frequency response to analysis of system stability 

(the Nyquist criterion), relating the frequency response to transient performance 
specifications. 

 To demonstrate frequency response and to determine stability of control system 
applying using Bode plot. 

 To demonstrate to plot graph of amplitude plot, usually in the log-log scale and a 
phase plot, which is usually a linear-log plot. 
 

4.1.  Nyquist Stability criterion 
 

 This graphical method, which was originally developed for the stability analysis of 
feedback amplifiers, is especially suitable for different control applications. With this method 
the closed-loop stability analysis is based on the locus of the open-loop frequency response  

. Since only knowledge of the frequency response is necessary, it is a versatile 

practical approach for the following cases: 
 

a) For many cases can be determined by series connection of elements whose parameters 

are known. 
 

b) Frequency responses of the loop elements determined by experiments or can be 

considered directly. 
 
c) Systems with dead time can be investigated.  
 

d) Using the frequency response characteristic of not only the stability analysis, but also the 

design of stable control systems can be easily performed. 

 
4.2.  Nyquist criterion using Nyquist plots 

 
To derive this criterion one starts with the rational transfer function of the open loop 
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Figure: Poles of the open and closed loop in the plane (multiple poles are counted according to 
their multiplicity) 
 
 

 

To determine , the locus can be drawn on the Nyquist diagram and 

the  phase  angle checked.  Expediently  one moves  this  curve  by  1  to  the  left  in  the  

plane. Thus for stability analysis of the closed loop the locus of the open loop 
according to Figure 5.5 has to be drawn. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure : Nyquist diagrams of and  

 

Here is the continuous change in the angle of the vector from the so called critical point (-1,j0) 

to the moving point on the locus of for . Points where the locus passes through  

the point (-1,j0) or where it has points at infinity correspond to the zeros and poles of on the 

imaginary axis, respectively. These discontinuities are not taken into account for the derivation of . 

Figure shows an example of a  
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Figure: Determination of continuous changes in the angle  

 
where two discontinuous changes of the angle occur. Thereby the continuous change of the angle 
consists of three parts 
 
 
 
 
 

 

The rotation is counter clockwise positive. 

 
As the closed loop is only asymptotically stable for , then from the general case of 
the Nyquist criterion follows: 

 
The closed loop is asymptotically stable, if and only if the continuous change in the angle of the 

vector from the critical point (-1,j0) to the moving point of the locus of the open loop is 
 
 
 
 
 
 

 

For the case with a negative gain of the open loop the locus is rotated by 180  relative to  

the case with a positive . The Nyquist criterion remains valid also in the case of a dead 
time in the open loop. 

 
4.3.  Simplified forms of the Nyquist criterion 

 

It follows from that for an open-loop stable system, that is and , then . 
Therefore the Nyquist criterion can be reformulated as follows: 

 
If the open loop is asymptotically stable, then the closed loop is only asymptotically stable, if 
the frequency response locus of the open loop does neither revolve around or pass through 
the critical point (-1,j0). 
 

Another form of the simplified Nyquist criterion for with poles at is the so called 
'left-hand rule': 
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The open loop has only poles in the left-half plane with the exception of a single or double 

pole at (P, I or behaviour). In this case the closed loop is only stable, if the critical  

point (-1,j0) is on the left hand-side of the locus in the direction of increasing values of  
. 

 
This form of the Nyquist criterion is sufficient for most cases. The part of the locus that is 
significant is that closest to the critical point. For very complicated curves one should go back to 
the general case. The left-hand rule can be graphically derived from the generalised locus  

The orthogonal ( )-net is observed and asymptotic stability of the closed loop is given, if 

a curve with passes through the critical point (-1,j0). Such a curve is always on the left-

hand side of . 
 

4.4.  The Nyquist criterion using Bode plots 
 

Because of the simplicity of the graphical construction of the frequency response 
characteristics of a given transfer function the application of the Nyquist criterion is often  

more simple using Bode plots. The continuous change of the angle of the vector from 

the critical point (-1,j0) to the locus of must be expressed by the amplitude and phase 

response of . From figure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure : Positive (+) and negative (-) intersections of the locus with the real axis on 
the left-hand side of the critical point 
 
it can be seen that this change of the angle is directly related to the count of intersections of  

the locus with the real axis on the left-hand side of the critical point between . The 
Nyquist criterion can therefore also represented by the count of these intersections if the gain 
of the open loop is positive. 
 

Regarding the intersections of the locus of with the real axis in the range , 
the transfer from the upper to the lower half plane in the direction of increasing values are 
treated as positive intersections while the reverse transfer are negative intersections  
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(Figure 5.7). The change of the angle is zero if the count of positive intersections is equal  

to the count of negative intersections . The change of the angle depends also on the 
number of positive and negative intersections and if the open loop does not have poles on the 
imaginary axis, the change of the angle is 
 
 
In the case of an open loop containing an integrator, i.e. a single pole in the origin of the complex  

plane ( ), the locus starts for at , where an additional is added to the 

change of the angle. For proportional and integral behaviour of the open loop 

 
  

is valid. In principle this relation is also valid for , but the locus starts forat 

(Figure 5.8), and this intersection would be counted  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure : Count of the intersections on the left-hand side of the critical point for behaviour of the 

open loop 

 

as a negative one if , i.e. if the locus for small is in the upper half plane of the real axis. But  

de facto there is for (and accordingly ) no intersection. This follows from the detailed 

investigation of the discontinuous change of the angle, which occurs at . As only a continuous 

change of the angle is taken into account and because of reason of symmetry the start of the locus  

at is counted as a half intersection, positive for and negative for , which is 

analogous to the definition given above For continuous changes of the angle 
 
 
 

 

The open loop with the transfer function has poles in the left-half plane and possibly a  

single ( ) or double pole ( ) at . If the locus of has positive and 

negative intersections with the real axis to the left of the critical point, then the closed loop is 

only asymptotically stable, if 
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is valid. For the special case, that the open loop is stable ( , ), the number of positive and 

negative intersections must be equal. 

 
From this it follows that the difference of the number of positive and negative intersections in 

the case of is an integer and for not an integer. From this follows immediately, 

that for the number is even, for the number is uneven and therefore in 
all cases is an even number, such that the closed loop is asymptotically stable. This is only 

valid if . 
The Nyquist criterion can now be transferred directly into the representation using frequency 

response characteristics. The magnitude response , which corresponds to the locus 

, is always positive at the intersections of the locus with the real axis in the range of 

. These points of intersection correspond to the crossings of the phase response 

with lines , etc., i.e. a uneven multiple of 180 . In the case of a positive  

intersection of the locus, the phase response at the lines crosses from below to 
top and reverse from top to below on a negative intersection as shown in Figure 5.9. In the 
following these crossings 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure : Frequency response characteristics of and definition of positive (+) 

and negative (-) crossings of the phase response with the -180  line 

 

will be defined as positive (+) and negative (-) crossings of the phase response over the  

particular lines, where may be valid. If the phase response starts at - 

180  this point is counted as a half crossing with the corresponding sign. Based on the discussions 

above the Nyquist criterion can be formulated in a form suitable for frequency response 

characteristics: 
 

The open loop with the transfer function has poles in the right-half plane, and possibly a 

single or double pole at . are the number of positive and of negative crossings of the  
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phase response over the lines in the frequency range where is 

valid. The closed loop is only asymptotically stable, if 

 
 
 
 
 
 
 
 
 

is valid. For the special case of an open-loop stable system ( , ) 
 
 
 

 
must be valid. 

 
Table 7.1: Examples of stability analysis using the Nyquist criterion with frequency response 
characteristics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally the 'left-hand rule' will be given using Bode diagrams, because this version is for the 
most cases sufficient and simple to apply. 

 
The open loop has only poles in the left-half plane with the exception of possibly one single or one 

multiple pole at (P, I or behaviour). In this case the closed loop is only asymptotically stable, 

if has a phase of for the crossover frequency at . 

 
This stability criterion offers the possibility of a practical assessment of the 'quality of 
stability' of a control loop. The larger the distance of the locus from the critical point the 
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farther is the closed loop from the stability margin. As a measure of this distance the terms 
gain margin and phase margin are introduced according to Figure below 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure : Phase and gain margin and or , respectively, in the (a) Nyquist diagram and (b) 

Bode diagram 
 

 
Example Problems: 

 

Q1 The polar plot of the open-loop transter of feedback control system intersects the 
real axis at—2 Calculate gain margin (in dB) of the system. 
 
 
 
 
 
 
 
 
 
 

 

 

 
Q2. What is the gain margin of a system in decibels if its Nyquist plot cuts the negative 
real axis at — 0.7? 
 
Ans. 
 
a = —0.7 
 
 
 
 
 
 
 
 

 

 
 
Q4. Consider a feed lock system with the open-loop transfer function. Given by 
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Examine the stability of the closed-loop system. Using Nyquist stability theory 
. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Q 5. Draw the Nyquest plot for the open loop transfer function given below: 
 
 
 
and obtain the gain margin and phase margin  
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Q6. Consider a feed lock system with the open-loop transfer function. Given by 
 
 
 
Examine the stability of the closed-loop system. Using 
Nyquist stability theory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Q7. Sketch the Nyquist plot for the system with the open loop transfer function 
 
 
 
 
 
and determine the range of K for which the system is 



Control Engineering -15ME73 2018 
 

46  

 

 
 
 
 
 
 
 
 
 

 

To get point of intersection on real axis, equate imaglnary part to zero. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Q.8. Sketch the Nyquist plot for system with 
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Q 9. How is it possible to make assessment of relative stability using Nyquist criterion? 
Construct Nyquist plot for the system whose open loop transfer function is 
 
 

 
Find the range of K for stability. 

 
Ans. 
 

 Nyquist critierion can be used to make assessment of relative stability. 
 Using the characteristic equation the Nyquist plot is drawn. A feedback system is 

sable if and only if, the i.e. contour in the G (s) plane does not encircle the (—1, 
0) point when the number of poles of G(s) in the right hand s plane is zero.

 If G (a) has P poles in the right hand plane, then the number of anticlockwise 
encirciements of the (—1, 0) point must be equal to P for a stable system, 
N=—P0
where N = No of clockwise encirclements about (—1, 0) point in C (s) 
plane P0 = No of poles G (s) in RHP 0 
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4.5.  Bode attenuation diagrams 
 

If the absolute value and the phase of the frequency response 

are separately plotted over the frequency , one obtains the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1: Plot of a frequency response: (a) linear, (b) logarithmic presentation (  on a 
logarithmic scale) (Bode plot) 
 
amplitude  response  and  the  phase  response.  Both  together  are  the  frequency  response  

characteristics. and are normally drawn with a logarithm and with a linear scale.  

This representation is called a Bode diagram or Bode plot. Usually will be specified in 

decibels [dB] By definition this is 
 
 

The logarithmic representation of the amplitude response has consequently a linear 

scale in this diagram and is called the magnitude. 
 

4.6. Stability analysis using Bode plots: 
 

 The magnitude and phase relationship between sinusoidal input and steady state 
output of a system is known as frequency response.


 The polar plot of a sinusoidal transfer function G (jw) is plot of the magnitude of G 


(jw) versus the phase angle of G (jw) on polar coordinates as ‗co‘ varied from zero to 

infinity.


 The phase margin is that amount, of additional phase lag at the gain crossover 
frequency required to bring the system to the verge of instability. 


 The gain margin is the reciprocal of the magnitude l G(jw) l at the frequency at which 

the phase angle as _1800.


 The inverse polar plot at G (jw) is a graph of 1/G (jw) as a function of w.


 Bode plot is a graphical representation of the transfer function for determining the 
stability of control system.

 Bode plot is a combination of two plot - magnitude plot and phase plot
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 The transfer function having no poles and zeros in the right -half s-plane are called 
minimum phase transfer function.


 System with minimum phase transfer function are called minimum phase systems.



 The transfer function having poles and zeros in the right half s-plane are called non-
minimum phase transfer functions systems with non-minimum phase transfer 
function. are called non-minimum phase system.


 In bode plot the relative stability of the system is determined from the gain margin 

and phase margin. .


 If gain cross frequency is less than phase cross over frequency then gain margin and 
phase margin both are positive and system is stable.


 If gain cross over frequency is greater than the phase crossover frequency than both 

gain margin and‘phase margin are negative.


 It gain cross over frequency is equal to me phase cross over trequency me gain marg 
and phase margin are zero and system is marginally stable.


 The maximum value of magnitude is known as resonant peak.



 The magnitude of resonant peak gives the information about the relative stability of 
the system.


 The frequency at which magnitude has maximum value is known as resonant 

frequency.


 Bandwidth is defined a the range of frequencies in which the magnitude of closed 
loop does not drop —3 db.

 

Example Problems: 

 

Q1.  Sketch the Bode Plot for the transfer function given by, 
 

 
and from Plot find (a) Phase and Gain cross rer frequencies (b) Gain Margin and Phase 
Margin. Is this System Stable? 
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The gain crosses 0db axis at co = 1.24 rad/sec, the gain crossover frequency is co = 
1.24 rad/sec.  
The phase crosses —180° line at co = 0.4 rad/sec, therefore phase crossover frequency 
is co = 0.4 rad/sec.  
At phase cross over the gain is 20 dB, therefore gain margin is —20 dB.  
At gain crossover the phase angle is 2150, the phase margin is 180° + (—215°) = —35°. 
As both gain and phase margins are negative, the system is unstable.  
 
 
Q3. Sketch the bode plot for the transfer function given by 
 
 
 
 
 

 

and from plot find gain margin and phase margin. 
 
Ans. 
 
On 0)-axis mark the point at 23.7 rad/sec. since in denominator (jw) term is having power 
one, from 23.7 draw a line of slope —20 db/decade to meet y-axis. This will be the starting 
point. 
 
Step 1. 
 
From the starting point to I corner frequency (0.33) the slope of the line is —20 db/decade. 
 
From I corner frequency (0.33) to second corner frequency (1) the slope of the line will be — 
20 ÷ (—20) = —40 db/decade. 
 
From II corner frequency to IV corner frequency (2) the slope of the line be —40 + (÷20) = 
—20 db/decade. 
 
From III corner frequency to IV corner frequency, the slope of line will be —20 + (—20) = 
—40 db/decade. 
 
From IV corner frequency (5) to V corner frequency the slope will be —40 ÷ (+20) = —20 
db/decade. 
 
After V corner frequency, the slope will be (—20) ÷ (—20) = —40 db/decade. 
 
Step 2. 
Draw the phase plot. 

 
Step 3. 
From graph  
Phase margin = +34° 
Gain margin =infinity
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Control Engineering -15ME73 2018 
 

55  

 

OUTCOMES: 
 At the end of the module, the students are able to:  
 

 To Determine Gain & Phase Margins effect. 
 Applications of the frequency response to analysis of system stability (the Nyquist 

criterion), relating the frequency response to transient performance specifications. 
 Determine stability of control system applying Nyquist stability criterion and using 

Bode plot. 
 Plot a graph of amplitude plot, usually in the log-log scale and a phase plot, which is 

usually a linear-log plot. 
 

SELF-TEST QUESTIONS: 
1. Apply Nyquist stability criterion for the system with transfer function           

G(S)H(S)=             K    find the stability.                                                                   
              S(S+2)(S+4) 

 
2. The open loop transfer function of a system is given by G(S)H(S) =      10(S+10)    . 

                                                                                                                          S(S+2)(S+5)       
 Draw Bode diagram, Find Gain cross over frequency (GCF), Phase cross over 
 frequency (PCF), Gain margin (GM), Phase margin (PM). Find stability of the 
 system. 

3. The open loop transfer function of a system is given by  
G(S)H(S) =              50K                                                                                                
  S(S+10)(S+6)(S+1) 

 Draw Bode diagram, Find Gain cross over frequency (GCF), Phase cross over 
 frequency (PCF), Gain margin (GM), Phase margin (PM). Find the value of K to 
 have GM=10 decibels. 
 
 
FURTHER READING: 

1. Control engineering, Swarnakiran S, Sunstar publisher, 2018. 

2. Feedback Control System, Schaum’s series. 2001. 
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MODULE 5 
 
 

SYSTEM COMPENSATION AND STATE VARIABLE 

CHARACTERISTICS OF LINEAR SYSTEMS 

 

 

LESSON STRUCTURE: 

5.1. Introduction: 
5.2. System Compensation 
5.3. Basic Characteristics of Lead, Lag and Lag-Lead Compensation: 
5.4. Lag Compensator 
5.5. Lead Compensator 
5.6. Lag-Lead Compensator 
5.7.    Introduction to state concepts: 
5.8.  Matrix representation of state equations 
5.9.  State controllability 

5.9.1.  Kalman test for state controllability 
5.9.2.  Gilbert's test for state controllability 

 
 

OBJECTIVES: 

 In order to obtain the desired performance of the system, we use compensating networks. 
Compensating networks are applied to the system in the form of feed forward path gain 
adjustment. 

 To demonstrate to compensate a unstable system to make it stable. 
 To demonstrate State controllability. 

 
5.1. Introduction: 

 

 Automatic control systems have played a vital role in the advancement of science and 

engineering. In addition to its extreme importance in sophisticated systems in Space vehicles, 

missile- guidance, aircraft navigating systems, etc., automatic control system as become an 

important and integral part of manufacturing and industrial processes. Control of process 

parameters like pressure, temperature, flow, viscosity, speed, humidity, etc., in process 

engineering and tooling, handling and assembling mechanical parts in manufacturing industries 

among others in engineering field where automatic control systems are inevitable part of the 

system. 
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 A control system is designed and constructed to perform specific functional task. The 

concept of control system design starts by defining the output variable( Speed, Pressure, 

Temperature Etc.,) and then determining the required specification ( Stability, Accuracy, and 

speed of response). In the design process the designs must first select the control Media and then 

the control elements to meet the designed ends. 
 
In actual practice several alternative can be analyzed and a final judgment can be made an 

overall performances and economy. 

 
 Systems have been categorized as manual and automatic systems. Based on the type of 

control needed most systems are categorized as - Manual & Automatic. In applications where 

systems are to be operated with limited or no supervision, then systems are made automatic and 

where system needs supervision the system is designed as manual. In the present-day context 

most of the systems are designed as automatic systems for which one of the important 

considerations was economics. However, the necessity for the system to be made as an automatic 

system is to make sure that the system performs with no scope for error which otherwise is prone 

to a lot of errors especially in the operations. Other classification of a system is based on the 

input and output relationships. Accordingly, in an Open Loop Control System the output is 

independent of the input and in a closed loop control system the output is dependant on the input. 

The term input refers to reference variable and the output is referred to as Controlled variable. 

Most of the systems are designed as closed loop systems where a feedback path with an element 

with a transfer function would help in bridging the relationship between the input and the output.  

 A system can be represented by the block diagram and from a s imple to a complicated 

system, reduction techniques can be used to obtain the overall transfer function of the system. 

Overall system Transfer function can also be obtained by another technique using signal flow 

analysis where the transfer function of the system is obtained from Mason‟s gain formula. Once 

the system is designed, the response of the system may be obtained based on the type of input. 

This is studied in two categories of response namely response of the systemic time domain and 

frequency domain. The system thus conceived and designed needs to be analyzed based on the 

same domains. At this stage the systems are studied from the point of view of its operational 

features like Stability, Accuracy and Speed of Response. Development of various systems have 

been continuous and the history of the same go back to the old WATT‟S 
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Speed Governor, which was considered as an effective means of speed regulation. Other control 

system examples are robot arm, Missile Launching and Guidance System, Automatic Aircr aft 

Landing System, Satellite based digital tracking systems,etc to name a few. In the design of the 

control systems, three important requirements are considered namely STABILITY, 

ACCURACY and SPEED OF RESPONSE. 
 
 Stable Systems are those where response to input must reach and maintain some useful 

value with in a reasonable period of time. The designed systems should both be Unstable 

Systems as unstable control systems produce persistent or even violent oscillations of the output 

and output will be driven to some extreme limiting value. 
 
Systems are also designed to meet certain levels of Accuracy. This is a relative term with limits 

based upon a particular application. A time measurement system may be from a simple watch to 

a complicated system used in the sports arena. But the levels of accuracy are different in both 

cases. One used in sports arena must have very high levels of sophistication and must be reliable 

showing no signs of variations. However, this feature of the system is purely based on the system 

requirement. For a conceived, designed and developed system, the higher the levels of Accuracy 

expected, higher is the Cost. 
 
 The third important requirement comes by way of SPEED OF RESPONSE. System must 

complete its response to some input within an acceptable period of time. System has no value if 

the time required to respond fully to some input is far greater than the time interval between 

inputs 

5.2. System Compensation 
 Compensation is the minor adjustment of a system in order to satisfy the given 

specifications. Specification refers to the objective of a system to perform and obtain the 

expected output after the system is provided with a proper input. Some of the needs o f the 

system compensation are as specified. 

 

5.3. Basic Characteristics Of Lead, Lag And Lag-Lead Compensation: 
R(S) C(S) 
 

COMPENSATOR PLAN T 
 
 
 
 

 
FEEDBACK ELELMENT 
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Lead compensation essentially yields an appropriate improvement in transient resonse and a 

small imrovement in steady state accuracy. Lag compensation on the other hand, yields an 

appreciable improvement in steady state accuracy ast the expense of increasing theh transient 

responsetime. Lag- lead compensation combines the characterisitcs of both lead compensation 

and lag compensation. The use of a lag- lead compensator raises the order of the system by two 

(unless cancellation occurs between the zeroes of the lag- lead network and the poles of the 

uncompensated open- loop transfer function), which means that the system becomes more 

complex and it is more difficult to control the transient response behavior. The particular 

situation determines the type of the compensation to be used.  

 

5.4. Lag Compensator 

The Lag Compensator is an electrical network which produces a sinusoidal output having the 
phase lag when a sinusoidal input is applied. The lag compensator circuit in the ‘s’ domain is 

shown in the following figure. 

 

Here, the capacitor is in series with the resistor R2 and the output is measured across this 
combination. 

The transfer function of this lag compensator is – 

 

From the above equation, α is always greater than one. We know that, the phase of the output 

sinusoidal signal is equal to the sum of the phase angles of input sinusoidal signal and the 
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transfer function. So, in order to produce the phase lag at the output of this compensator, the 

phase angle of the transfer function should be negative. This will happen when α>1. 

 

5.5. Lead Compensator 

The lead compensator is an electrical network which produces a sinusoidal output having phase 
lead when a sinusoidal input is applied. The lead compensator circuit in the ‘s’ domain is shown 

in the following figure. 

 

 Here, the capacitor is parallel to the resistor R1and the output is measured across resistor 
$R_2. The transfer function of this lead compensator is – 

 

 We know that, the phase of the output sinusoidal signal is equal to the sum of the phase 
angles of input sinusoidal signal and the transfer function. nSo, in order to produce the phase 
lead at the output of this compensator, the phase angle of the transfer function should be positive. 

This will happen when 0<β<1. Therefore, zero will be nearer to origin in pole-zero 
configuration of the lead compensator. 

5.6. Lag-Lead Compensator 

Lag-Lead compensator is an electrical network which produces phase lag at one frequency 
region and phase lead at other frequency region. It is a combination of both the lag and the lead 
compensators. The lag-lead compensator circuit in the ‘s’ domain is shown in the following 

figure. 
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This circuit looks like both the compensators are cascaded. So, the transfer function of this 
circuit will be the product of transfer functions of the lead and the lag compensators. 

 

5.7. Introduction to state concepts: 

As we know from previous chapters evaluation of control system can be broadly classified as 
Classical method and Modern methods. For Simple Input Output (SIO) systems classical method 
can be easily adopted and can be analysed by developing mathematical models. But for Multiple 
Input Multiple Output (MIMO) systems classical methods was quite difficult to analyse and it 
was time consuming since classical method analysis one loop at a time. Hence Modern method 
came into existence where the system under consideration can be analysed in time domain 
format. Modern methods which involves direct time domain analysis and also provides a basis 
for system optimization is known as state variable approach. State variable models are basically 
time domain models which involve the analysis and study of linear and nonliner, time invariant 
or time varying multi input multi output control system. 

Some of the advantages of state variables analysis are 

a. It can be applied to non linear system 
b. It can be applied to time invariant system 
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c. It can be applied to multiple input multiple output system 
d. It gives the idea about the internal state of the system. 
 

5.8. Matrix representation of state equations 
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5.9. State controllability: 

In control system analysis, we must be clear with the two conditions for deciding output of a 
system does the solution of the control system exists at not. They are 

1. Is it possible to transfer the system under consideration from any initial state to desired state 
by the application of suitable control force with the specified time? 

2. Is it possible to determine the initial stats of the system if the output vector is known for a 
finite length of time. 

The answer for these questions can be justified by using state controllability and observability. 
Hence, controllability can be defined as, 

The system is said to be completely controllable if it is possible to transfer the system state from 
any initial state x(t0) to any other desired state x(tf) in a specified finite time interval (t0 ≤ t ≤ tp) 
by unconstrained control vector U(T). 

Otherwise the system is not completely state controllable. 

Consider a multiple input linear time invariant system represented by its state equations as 

x(t) = AX(t)+ BU(t)  

where, A is (n x n) order state matrix 
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B is (n x m) order input matrix 

U(t) is (mx1) input vector 

X(t) is (n x 1) state vector 

The state controllability tests can be performed by two methods, they are 

1. Kalman's test for controllability : This method is applicable for any matrix A either matrix 
A is canonical form or otherwise. 

2. Gilberth's test for controllability : This method is based on converting the matrix A into the 
diagonal canonical form and later it is used to determine the state controllability of the system. 

 

5.9.1. Kalman test for state controllability  

If the nth order multiple input linear time invariant system represented by state equation as 

X = AX(t) + BU(t) 

where A is (n x n) order matrix then controllability matrix (Qc) of the size n (n x m) can be given 
as 

QC = [B AB A2B A3B ..... An-1 B] 

The system is said to be controllable if the rank of the controllability matrix (Qc) is 'n' then the 
determined of order (n x n) of any sub matrix of Qc has non zero value. Also if the rank of the 
controllability matrix (Qc) is less than (n), then the system is not completely state controllable. 
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5.9.2. Gilbert's test for state controllability 
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OUTCOMES: 

At the end of the module, the students are able to:  
 obtain the desired performance of the system, we use compensating networks. 

Compensating networks are applied to the system in the form of feed forward path gain 
adjustment. 

 Differentiate different types of compensators. 
 Concepts of state controllability. 

 

SELF-TEST QUESTIONS: 
1. Define compensators. What is the need of compensators in a system. 
2. Explain with a sketch Lag compensator. 
3. Explain with a sketch Lead compensator. 
4. Explain with a sketch Lag-Lead compensator. 
5. Explain basic components of Lag - Lead compensator. 
6. Obtain State model for the equation    �⃛� + 𝟑�̈� + 𝟐�̇� + 𝐲 = 𝐫(𝐭). 
7. Obtain State model for the equation   �⃛� + 𝟔�̈� + 𝟏𝟐�̇� + 𝟖𝐲 = 𝟑𝐔(𝐭). 

�̇� = [
−𝟐 𝟏
𝟏 −𝟐

]X + [𝟏
𝟎

] 𝑼. 

9. Find the controllability of linear dynamic time invariant system by Gilberth 
controllability test. 

�̇� = [
𝟏 𝟏
𝟎 −𝟏

]X + [𝟏
𝟎

] 𝑼 

 
FURTHER READING: 

1. Control engineering, Swarnakiran S, Sunstar publisher, 2018. 

2. Feedback Control System, Schaum’s series. 2001. 

 

8. Find the controllability of linear dynamic time invariant system by Kalman’s 

controllability test. 


