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MODULE -1

INTRODUCTION

LESSON STRUCTURE

1.1. Introduction

1.2. Open Loop System

1.3. Closed loop control system

1.4. Concepts of feedback

1.5. Requirements of Ideal control system
1.6. Typesof controllers

OBJECTIVES

To teach students the characteristics of closed-loop control systems, and feedback control
system and different types of controllers.

1.1.Introduction:
A system is an arrangement of or a combinatipn of nt phy5| cal components connected
or related in such a manner so asto for entire dni acertain objective.
Control system isan arrangemeW caI~eI ements connected in such a manner
S0 asto regulate, director command itself to achi Q%ﬂer\taln objective
Any control system consists of three components nhamely input, system and outpuit.
The input isthe stimulus or excitation appli@) asystem from an external energy source. A system
is the arrangement of physical compon d oﬁtput is the actual response obtained from the
system. The control system may be one of ‘the following type.
1) Man made
2) Natural and / or biological and
3) Hybrid consisting of man-made and natural or biological.
Requirements of good control system are accuracy, sensitivity, noise, stability, bandwidth, speed,
oscillations

Types of control systems
Control systems are classified into two general categories based upon the control action
which is responsible to activate the system to produce the output viz.
1) Open loop control system in which the control action is independent of the output.
2) Closed loop control system in which the control action is somehow dependent upon the
output and are generally called as feedback control systems.
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1.2. Open L oop System

It isasystem in which control action is independent of output. To each reference input there
is a corresponding output which depends upon the system and its operating conditions. The
accuracy of the system depends on the calibration of the system. In the presence of noise or
disturbances open loop control will not perform satisfactorily.

Reference Input| __ ut) — | Controlled output
——— Controlier Plant © p——>

r(t) C(t)

Example: Automatic hand driver, automatic washing machine, bread toaster, electric lift, traffic
signals, coffee server, theatre lamp etc.

Advantages of open loop system:

They are simple in construction and design.

They are economic.

Easy for maintenance.

Not much problem of stability.

Convenient to use when output is difficult to measure.

Dlsadvantages of open loop system

1 Inaccurate and unreliable because accuracy is dependent e accuracy of calibration.

2. Inaccurate results are obtained with er variatio, %nal disturbances.

3. To maintain quality and accuracy, recalibrati @ er is necessary from time to time.

N D

1.3. A closed loop contr ol system: Q/ o
Is a system in which the control action dﬁdﬁ on the output. In closed loop control system the
actuating error signal, which is the difg between the input signal and the feedback signal

) Ok WD

(output signal or its function) is fed to thégontroller.
The elements of closed loop system are command, reference input, error detector, control element
controlled system and feedback element.

r(t)

u(t) c(t)

e(t)
Controller Plant » Output

Reference |
Transducer

Input ——

Feedback | c(t)
| element [T

Elements of closed loop system are:

1. Command: The command is the externally produced input and independent of the feedback
control system.

2. Reference Input Element: It is used to produce the standard signals proportional to the
command.
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3. Error Detector: The error detector receives the measured signal and compares it with
reference input. The difference of two signals produces error signal.
4. Control Element: This regulates the output according to the signal obtained from error
detector.
5. Controlled System: This represents what we are controlling by feedback loop.
6. Feedback Element: This element feedback the output to the error detector for comparison
with the reference input.
Example: Automatic electric iron, servo voltage stabilizer, sun-seeker solar system, water level
controller, human perspiration system.

Advantages of closed loop system:
1. Accuracy isvery high as any error arising is corrected.
2. It senses changes -in output due to environmental or parametric change, internal disturbance

etc. and corrects the same.

3. High bandwidth.
4. Facilitates automation.

Disadvantages
1. Complicated in design and maintenance costlier.
2. System may become unstable.

1.4. Concepts of feedback: \
(0]

Feedback system isthat in WhiCh\% p;%géed back to input. In feedback system

corrective action starts only after the output ed.
1.5.Requirements of good contr g %\n :
Requirements of good control sy i
Accuracy
Sensitivity
Noise
Stability
Bandwidth
Speed
Oscillations

Noogbk~wbdrE

1.6. Typesof controllers:

An automatic controller compares the actual value of the system output with the reference
input (desired value), determines the deviation, and produces a control signal that will reduce the
deviation to zero or asmall value. The manner in which the automatic controller produces the control
signal is called the control action. The controllers may be classified according to their control actions
as,

1. Proportional controllers.
2. Integra controllers.
3. Proportional-plus- integral controllers.
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4. Proportional-plus-derivative controllers.
5. Proportional-plus- integral-plus-derivative controllers

A proportional control system is a feedback control system in which the output forcing function is

directly proportional to error.

A integral control system is a feedback control system in which the output forcing function is
directly proportional to the first time integral of error.

A proportional-plus-derivative control system is a feedback control system in which the output
forcing function isalinear combination of the error and itsfirst time derivative.

A proportional-plus- integral control system is a feedback control system in which the output
forcing function isalinear combination of the error and itsfirst time integral.

A proportional-plus-derivative-plus- integral control system is afeedback control systemin
which the output forcing function isalinear combination of the error, itsfirst time derivative and its

first time integral.

1& h(t)
h(t) P controller K14} PD controller
“ W (ideal)
K K
C
0 0 i
ht) 4
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OUTCOMES:
At the end of the unit, the students are able to:
> Different types of control system.
> ldeal requirements of a good control system.
> Different types of controllers.

SELF-TEST QUESTIONS:
1. Define control system.

Distinguish between open loop and closed loop control system with suitable example.
What are the requirements of an ideal control system? Explain them.

With a suitable example explain regulatory system and follow - up system.

Explain the concept of feedback control system.

What is control action?

Explain proportional integral differential controller with the block diagram.

© N o g M w DN

Explain following controller. State its characteristics.
a) Proportiona plus derivative control action

b) Proportional plusintegral con@l 331 Q}

FURTHER READING:
1. Control engineering, Swarnakiran Sunst@@.lbllsher 2018.
2. Feedback Control System, Schau e €s£2001

'QQ 0




Control Engineering -10ME82 | 2018

MODULE -2
MATHEMATICAL MODELS

L ESSON STRUCTURE:

2.1. Modeling of Control Systems

2.2. Modeling of M echanical Systems

2.3. Mathematical M odeling of Electrical System
2.4. ForceVoltage Analogy

2.5. Force Current Analogy

2.6. Transfer Functions definition
2.7. Block Diagram:

2.8. Signal Flow Graphs

2.9. Mason’s Gain Formula

OBJECTIVES:
> To develop mathematical model for the anical, Ical, servo mechanism and
hydraulic systems.
» To teach students the concepts of'lock diagr transfer functions.
» To teach students the concepts of Si flo A

&Q} .‘\

2.1. M odeling of Control Systems: Q j'\

o]

The first step in the design and the analysis of control system is to build physical and mathematical
models. A control system being a collection of several physical systems (sub systems) which may be
of mechanical, electrical electronic, thermal, hydraulic or pneumatic type. No physical system can
be represented in its full intricacies. Idealizing assumptions are always made for the purpose of
analysis and synthesis. An idealized representation of physical system is called a Physical Model.

Control systems being dynamic systems in nature require a quantitative mathematical
description of the system for analysis. This process of obtaining the desired mathematical
description of the system is called Mathematical Modeling.

In Unit 1, we have learnt the basic concepts of control systems such as open loop and feedback
control systems, different types of Control systems like regulator systems, follow-up systems and
servo mechanisms. We have also discussed a few simple applications. In this chapter we learn the
concepts of modeling.

6
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The requirements demanded by every control system are many and depend on the system
under consideration. Major requirements are 1) Stability 2) Accuracy and 3) Speed of Response. An
ideal control system would be stable, would provide absolute accuracy (maintain zero error despite
disturbances) and would respond instantaneously to a change in the reference variable. Such a
system cannot, of course, be produced. However, study of automatic control system theory would
provide the insight necessary to make the most effective compromises so that the engineer can
design the best possible system. One of the important steps in the study of control systems is
modeling. Following section presents modeling aspects of various systems that find application in
control engineering.

The basic models of dynamic physical systems are differential equations obtained by the
application of appropriate laws of nature. Having obtained the differential equations and where
possible the numerical values of parameters, one can proceed with the analysis. When the
mathematical model of a physical system is solved for various input conditions, the results represent
the dynamic response of the system. The mathematical model of a system is linear, if it obeys the
principle of superposition and homogeneity.

A mathematical model is linear, if the differential equation describing it has coefficients,
which are either functions of the independent Variable or aéé ants. If the coefficients of the

describing differential equations are functions

mathematical model is linear time-varying. On t
differential equations are constants, theym‘{osLey'{l'i
like the Fourier and Laplace transformations ar

no physical system in nature is perfectly Iinea&
to get alinear model. .

independent variable), then the
ﬁ#\d, if the coefficients of the describing
e-invariant. Powerful mathematical tools
atgle‘for use in linear systems. Unfortunately
efore certain assumptions must always be made

N

Usually control systems are complex. As a first approximation a simplified model is built to
get ageneral feeling for the solution. However, improved model which can give better accuracy can
then be obtained for a complete analysis. Compromise has to be made between simplicity of the
model and accuracy. It is difficult to consider all the details for mathematical analysis. Only most
important features are considered to predict behavior of the system under specified conditions. A
more complete model may be then built for complete analysis.

2.2. Modeling of M echanical Systems:

Mechanical systems can be idealized as spring- mass-damper systems and the governing
differential equations can be obtained on the basis of Newton’s second law of motion, which states
that

F = ma: for rectilinear motion
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where F: Force, m: mass and a acceleration (with consistent units)
T =1 a: or Jo for rotary motion
where T: Torque, I or J: moment of inertia and a: angular acceleration (with consistent units)

Mass / inertia and the springs are the energy storage elements where in energy can be stored
and retrieved without loss and hence referred as conservative elements. Damper represents the
energy loss (energy absorption) in the system and hence is referred as dissipative element.
Depending upon the choice of variables and the coordinate system, a given physical model may lead
to different mathematical models. The minimum number of independent coordinates required to
determine completely the positions of all parts of a system at any instant of time defines the degrees
of freedom (DOF) of the system. A large number of practical systems can be described using a finite
number of degrees of freedom and are referred as discrete or lumped parameter systems. Some
systems, especially those involving continuous elastic members, have an infinite number of degrees
of freedom and are referred as continuous or distributed systems. Most of the time, continuous
systems are approximated as discrete systems, and solutions are obtained in a simpler manner.
Although treatment of a system as continuous gives exact results, the analysis methods available for
dealing with continuous systems are limited tosa narrow selectioh ,of problems. Hence most of the
practical systems are studied by treating them inite | masses, springs and dampers. In
general, more accurate results are obtained by j the number of masses, springs and
dampers-that is, by increasing the numb fd ees

Mechanical systems can be of two types: QX &

1) Translation Systems Q O
2) Rotational Systems. o

The variables that described the motion are displacement, velocity and acceleration.
And also we have three parameters-

e Mass which is represented by ‘M.

e Coefficient of viscous friction which is represented by ‘B
e Spring constant which is represented by ‘K’.

In rotational mechanical type of systems we have three variables-

e Torque which is represented by ‘T’.
e Angular velocity which is represented by ‘o’
e Angular displacement represented by ‘0’

8
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Now let us consider the linear displacement mechanical system which is shown below-

| >

Mg k F
‘ (M
b

spring mass mechanical system

We have already marked various variables in the diagram itself. We have x is the displacement as
shown in the diagram. From the Newton’s second law of motion, we can write force as

dy
y = gt
e Hu’.‘
FJ - K=
From the diagram we can see that the,
FE F in
On substituting the values of F1, Foand ation and taking the Laplace transform
we have the transfer function as, CO
> (?

ol iy g
v ¥
2.3. Mathematical M odeling of Electrical System:

In electrical type of systems we have three variables -

e Voltage which is represented by ‘V’.

e Current which is represented by ‘I’.

e Charge which is represented by ‘Q’.
And also we have three parameters which are active and passive elements —

e Resistance which is represented by ‘R’.

e Capacitance which is represented by ‘C’.

¢ Inductance which is represented by ‘L’.

Now we are in condition to derive analogy between electrical and mechanical types of

systems. There are two types of analogies and they are written below:

9
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2.4. Force Voltage Analogy :

In order to understand this type of analogy, let us consider a circuit which consists of series
combination of resistor, inductor and capacitor.

A voltage V is connected in series with these elements as shown in the circuit diagram. Now
from the circuit diagram and with the help of KVL equation we write the expression for voltage in
terms of charge, resistance, capacitor and inductor as,

Now comparing the above with that we have deri %gé:%echanical system we find that -

QY
A

1. Mass (M) isanalogousto inductance (L). CO R

2. Forceisanalogousto voltage V. Q/

3. Displacement (x) is analogous to ch )

4. Coefficient of friction (B) isan sto'resistance R and
5.

Spring constant is analogous to inverse of the capacitor (C).

This analogy is known as force voltage analogy.

2.5. Force Current Analogy :
In order to understand this type of analogy, let us consider a circuit which consists of parallel
combination of resistor, inductor and capacitor.

10
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I(t) R- L= C= E()

A voltage E is connected in parallel with these elements as shown in the circuit diagram.
Now from the circuit diagram and with the help of KCL equation we write the expression for current
in terms of flux, resistance, capacitor and inductor as,
1 o

o
b g T Epprn ottt By o
3 {li" R

Now comparing the above with that we have derived for the mechanical system we find that,

1. Mass (M) isanalogousto Capacitor (C).

2. Forceisanalogousto current I.

3. Displacement (x) is analogous to ﬂu>& ).

4. Coefficient of friction (B) isan goustor R and
5. Spring constant K is analogous to Inyver, of ctor (L).

This analogy is known as force current analogy. Q/

2.6. Transfer Functions definition (} O

The transfer function of a contr&tem is defined as the ration of the Laplace transform of
the output variable to Laplace transform of the input variable assuming all initial conditions to be
zero.

GI:.'\':] = cls)
F(s)

= C(s)

2.7.Block Diagram:

A control system may consist of a number of components. In order to show the functions
performed by each component in control engineering, we commonly use a diagram called the
Block Diagram.

A block diagram of a system is a pictorial representation of the function performed by
each component and of the flow of signals. Such a diagram depicts the inter-relationships which

11
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exists between the various components. A block diagram has the advantage of indicating more
realistically the signal flows of the actual system.

In a block diagram all system variables are linked to each other through functional
blocks. The —Functional Block or simply —Block is a symbol for the mathematical operation on
the input signal to the block which produces the output. The transfer functions of the components
are usually entered in the corresponding blocks, which are connected by arrows to indicate the
direction of flow of signals. Note that signal can pass only in the direction of arrows. Thus a
block diagram of a control system explicitly shows a unilateral property.

Block diagram of a closed loop system.

R{S) Ei5} .I' Gis) -' OS]
B3]
{ Hig) —
The output C(s) is fed back to the summing point, it is compared with reference
input R(s). The closed loop nature is indicated in figk3, inear system may be represented

by a block diagram consisting of blocks, summing ts”and branch points. A branch is the
point from which the output signal frWzk <c.ilo 1 ‘goes concurrently to other blocks or
summing points. QX N

necessary to convert the form of out al-to that of he input signal. This conversion is
followed by the feedback element whosetransfer function is H(s) as shown in fig 1.4. Another
important role of the feedback element is to modify the output before it is compared with the
input.

The ratio of the feedback signal B(s) to the actuating error signal E(s) is called the open loop

When the output is fed back t@mdpoint for comparison with the input, it is

transfer function.
Open loop transfer function = B(S)/E(s) = G(9)H(9)
The ratio of the output C(s) to the actuating error signal E(s) is called the feed forward
transfer function.
Feed forward transfer function = C(s)/E(s) = G(S)
If the feedback transfer function is unity, then the open loop and feed forward transfer
function are the same. For the system shown in Figl.4, the output C(s) and input R(s) are related

12
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as follows.
C(s) = G(s) E(9)
E(s) =R(s) - B(9)
=R(s) - H(s) C(9)
But B(s) = H(s) C(9)
Eliminating E(s) from these equations

C(s) = G(9) [R(s) - H(s) C(9)]
C(s) + G(s) [H(9) C(9)] = G(9) R(9)
C(9[1 + G(9H(9)] = G(9R(s)

C(9) G(9)

R(s) 1+ G(s) H(s)
C(9)/R(9) iscalled the closed loop transfer function.

The output of the closed loop system ly depends @oth the closed loop transfer

function and the nature of the input. If the fe&back ' i@ve, then
C(s) S) .
€)

R(s) 1

R

2.8.SIGNAL FLOW GRAPHS 'QQ

An alternate to block diagram is the signal flow graph due to S. J Mason. A signal flow
graph is a diagram that represents a set of simultaneous linear algebraic equations. Each signal
flow graph consists of a network in which nodes are connected by directed branches. Each node
represents a system variable, and each branch acts as a signal multiplier. The signal flows in
the direction indicated by the arrow.

Definitions:

Node: A nodeisa point representing a variable or signal.

Branch: A branch isadirected line segment joining two nodes.

Transmittance: It isthe gain between two nodes.

Input node: A node that has only outgoing branches. It isalso, called as source and corresponds

13
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to independent variable.
Output node: A node that has only incoming branches. This isalso called as sink and
Corresponds to dependent variable.
Mixed node: A node that has incoming and outgoing branches.
Path: A pathisatraversal of connected branches in the direction of branch arrow.
Loop: A loop isaclosed path.
Self loop: It isa feedback loop consisting of single branch.
L oop gain: The loop gain isthe product of branch transmittances of the loop.
Non-touching loops. Loopsthat do not possess a common node.
Forward path: A path from sourceto sink without traversing an node more than once.
Feedback path: A path which originates and terminates at the same node.
Forward path gain: Product of branch transmittances of a forward path.

Properties of Signal Flow Graphs:

1. Signal flow appliesonly to linear systems.
2. The equations based on which a signal flow graph is drawn must be algebraic equations

in the form of effects as a function of causes. Nodes

following a succession of causes and gffects through t .

3. Signals travel along the branches only in t 'rq{iy escribed by the arrows of the
branches.

4. The branch directing from node Xiato X¢fepr dependence of the variable Xj on Xk
but not the reverse. ¢

5. The signal traveling along the brancf‘&wd Xj is multiplied by branch gain aq and
signal aXk isdelivered at node X;. Q )

are used to represent variables. NagR;/ the no are arranged left to right,

D

Guidelinesto Construct the Signal Fld@rapﬁs:

The signal flow graph of a system is constructed from its describing equations, or by
direct reference to block diagram of the system. Each variable of the block diagram becomes a
node and each block becomes a branch. The general procedure is

1. Arrange the input to output nodes from left to right.

2. Connect the nodes by appropriate branches.

3. If the desired output node has outgoing branches, add a dummy node and a unity
gain branch.

4. Rearrange the nodes and/or loops inthe graph to achieve pictorial clarity.

2.9. Mason’s Gain For mula:

The relationship between an input variable and an output variable of a signal flow graph is

14
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given by the net gain between input and output nodes and is known as overall gain of the system.
Masons gain formulais used to obtain the overall gain (transfer function) of signal flow graphs.

Gain P isgiven by
:1ZPA
K k

Where, P« isgain of k™ forward path,
A isdeterminant of graph
A=1-(sum of all individual loop gains) + (sum of gain products of all possible combinations
of two non touching loops — sum of gain products of all possible combination of three
non touching loops) + -

Ax is cofactor of k™ forward path determinant of graph with loops touching k™ forward path. It
isobtained from A by removing the loopstouching the path Px.

Example 1 Q’

Obtain the transfer function of C/R of the systel Qég al flow graph is shown in Figure

\ 4

O
<">

Gy

Solution:

There aretwo forward paths:
Gainof path 1 : P1=G;
Gain of path 2 : P.=G;

15
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There are four loops with loop gains:

L1=-G1G3, Lo=G1Gs, L3=-G2G3, La= GoGa

There are no non-touching loops.

A = 1+G1G3-G1Ga+G2Gs-G2G4

Forward paths 1 and 2 touch all the loops. Therefore, A1=1, Ao=1

C(s) _ RA,+PA, G, +G,
The transfer function T = R(s) A T 1¥GCGC -GG iGG =G G
1 3 1 4 2 3 2 4

Example 2

Obtain the transfer function of C(s)/R(s) of the system whose signal flow graph is shown in
Figure

Qo
There isone forward path, whose gai n’Ql:GleGs
There are three loops with loop gains:

L1=-G1GzH3,

L2=G,G3Ho>,

L3=-G1GGs

There are no non-touching loops.

A = 1-G1GoH1+GoG3H2+G1G2Gs

Forward path 1 touches al the loops. Therefore, A1= 1.

PA
The transfer function T = J—)

Rs)~ &

16
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OUTCOMES:

At the end of the unit, the students are able to:

» Mathematical modeling of mechanical, electrical, servo mechanism and hydraulic systems.
» Tofind Transfer function of a system.

» Calculate the gain of the system using block diagram and signal flow graph and to illustrate

the response of systems.

SELF-TEST QUESTIONS:

8.
9.

What mathematical model permits easy interconnection of physical systems?

Define the transfer function.

What are the component parts of the mechanical constants of a motor*s transfer function?
Derive the transfer function of a Spring - Mass-Damper — system.

Differentiate between Fl and FV analogy.

Obtain Transfer function of Armature controlled DC motor.

Derive transfer function for the Electrical system shown in Figure below.

e L
| ="
) @ R

Differentiate between Block diagram and Signal flow graph techniques.
Explain the rules for constructing Signal flow graph.

10. Reduce the block diagram shown in Figure 1, to its simplest possible form and find its

closed loop transfer function.

-
T

R—> £+ Gy () >C

'Hl\ sz

Figure 1

17
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11. Find C(S)/R(S) for the following system using Mason’s gain rule shown in figure 2.

G+

'

> C(S)

Figure 2

FURTHER READING:

1. Control engineering, Swarnakiran S, Sunstar publisher, 2018.
2. Feedback Control System, Schaum’s series. 2001.

18
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MODULE - 3

TRANSIENT AND STEADY STATE RESPONSE ANALYSIS

L ESSON STRUCTURE:

3.1. Introduction

3.2. TimeResponse

3.3. Steady State Response

3.4. Routh’s-Hurwitz Criterion

3.5. Definition of root loci

3.6. Analysisusingroot locus plots

3.7. General rulesfor constructing root loci

OBJECTIVES:

» To analyse stability in complex domain and frequency domain systems.
» To educate static and transient behavior of a system.
» To demonstrate stability of the various control systems by applymg Routh’s stability criterion.

» To study stability by using Root locus pI S. Q/
3.1. Introduction: %
Time is used as an mdependentw r@& of ‘the control systems. It is important to

analyse the response given by the system for Q/ plied excitation, which is function of time.
Analysis of response means to see the variati output with respect to time. The output behavior
with respect to time should be within th ‘|fled limits to have satisfactory performance of the
systems. The stability analysis lies in e response analysis that is when the system is stable
output is finite

The system stability, system accuracy and complete evaluation is based on the time response
analysis on corresponding results.

3.2. TimeResponse:
The response given by the system which is function of the time, to the applied excitation is called

time response of a control system.

Practically, output of the system takes some finite time to reach to its final value. Thistime varies
from system to system and is dependent on different factors. The factors like friction mass or inertia of
moving elements some nonlinearities present etc. Example: Measuring instruments like Voltmeter,
Ammeter.

Classification:
The time response of a control system is divided into two parts.

1 Transient response ct(t)
2 Steady state response css(t)

19
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.. c(t)=ct(t) +cSS(t)
Where c(t)= Time Response
Total Response=Zero State Response +Zero | nput Response.

3.3. Steady State Response:

It is defined the part of the response which remains after complete transient response
vanishes from the system outpuit.

. 1,&, Lim c(t)=cs(t)

The time domain analysis essentially involves the evaluation of the transient and
Steady state response of the control system.

For the analysis point of view, the signals, which are most commonly used as
reference inputs, are defined as standard test inputs.

« The performance of a system can be evaluated with respect to these test signals.
« Based on the information obtained the design of control systemis carried out. The
« commonly used test signals are

1. Step Input signals.

2. Ramp Input Signals.

3. Parabolic Input Signals.

4. Impulseinput signal.

4 <
1. Step input signal (position function) &
It is the sudden application of the input at a [ e as usual in the figure or instant any us

change in the reference input CO A

.

Example :- gréc N
a. If theinput is an angular position o«d hanical shaft a step input represent the sudden

rotation of a shaft. D
b. Switching on a constant voltagen «electrical circuit.
e.

c. Sudden opening or closing av

[¥] 4
Whedh, A= L, BT =150 =-1

The step is a signal who*s value changes from 1 value (usually 0) to another level A in Zero
time.
In the Laplace TransformformR(s) = A/ S
Mathematically r(t) = u(t)
=1fort>0
=0fort<O0
2. Ramp Input Signal (Veocity Functions):
It is constant rate of change in input that is gradual application of input as shown in fig (2 b).
r(t)

20
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Ex:- Altitude Control of aMissile

l_.-'

Shope= A
p T |
Theramp isasignal, which starts a avalue of zero and increases linearly with time.
Mathematically r (t) = At fort >0
=0 for t<0.

INLT formR(S) = A

S2
If A=1, it iscalled Unit Ramp Input

Parabolic Input Signal (Acceleration function):
e Theinput which is one degree faster than a ramp type of input as shown in fig (2 ¢) or it isan
integral of aramp.

e Mathematically a parabolic signal of magnitude

Ads given by oitl = A ule

b = Sklope = At
LR AT tort=4
A Frofe=10 -\-\“\-\.\_\__ >

-
| [

InLT form B{S) = A
e
= If A= 1, @ wndt parab=olic fonction 1= defined as oty =% win)
ie.. r{Eh
i .
LT for RS =1 t fort=o

5 i

LI 1 e ]

Impulse Input Signal : Y

It isthe input applied instantaneously (for short duration of time) of very high amplitude as
shown in fig 2(d)
Eg: Sudden shocksi e, HV due lightening or short circuit.
It is the pulse whose magnitude is infinite while its width tends to zero.

nt
e, [ —= [ (zero) applied
moinEntanly .I.
A
l | "
o i

_l|:—ll- ]

Area of impulse = Its magnitude
If areais unity, it iscalled Unit Impulse Input denoted as (&)
Mathematically it can be expressed as

rf)=Afort=0
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=0fort#0
INLT formR(S) =1ifA=1

3.4. Routh’s-Hurwitz Criterion
E.J. Routh (1877) developed a method for determining whether or not an equation has roots

with + ve real parts without actually solving for the roots.

A necessary condition for the system to be STABLE is that the real parts of the roots of the
characteristic equation have - ve real parts. This insures that the impulse response will decay
exponentially with time.

If the system has some roots with real parts equal to zero, but none with +ve real parts the
systemissaid to be MARGINALLY STABLE.

It determines the poles of a characteristic equation with respect to the left and the right half
of the S-plane without solving the equation.

The roots of this characteristic equation represent the closed loop poles. The stability of the
system depends on these poles. The necessary, but not sufficient conditions for the system having no
rootsin the right half S-Plane are listed below.

i.  All the co-efficients of the polynomial must have the same sign.
ii.  All powersof S, must present in descending order.
iii.  The above conditions are not sufficient.
In avast majority of practical systems. The following statements on stability are quite useful.

i. Ifal the roots of the characterigtic “eguation g’—ve real parts the system is
STABLE.
ii.  If any root of the characteristic equation %gée,real.part or if there is a repeated root on
the j -axis, the system is unstable. o
iii.  If condition (i) is satisfied except for the ce.of one or more non repeated rootson thej -
axisthe system is limitedly STABLIb& -

In this instance the impulse r&]se does not decay to zero athough it is bounded.
Additionally certain inputs will produce outputs. Therefore marginally stable systems are
UNSTABLE.

The Routh Stability criterion is a method for determining system stability that can be applied
to an nth order characteristic equation of the form

Pran1dt+an2d a3 al st + &=

The criterion is applied through the use of a Routh Array (Routh table) Defined as follows:
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=]

gl am an- . am-+
g 1 an-| an-3 an-:
. & :
Slk- - bl b bl
SIE-2 [ ||-" -3
Slk-= dl d2
5 el alb
o AL
il
¥ &

The ROUTH STABILITY CRITERION is stated asfollows,
All the terms in the first column of Routh’s Array should have same sign, and there should

not be any change of sign.
This is a necessary and sufficient condition for the system to be stable. On the other hand any change

of sign in the first column of Routh’s Array indicates,

i. The System is Unstable, and
ii. The Number of changes of sign give&he n

ber o@%’ing in theright half of S-Plane

Example : find the stability of the systenf usi uth’s criteria. For the equation

3S*+10S3+55*+55+2=0 o QO
s | 3 5 2
83 10 5 0
83 @) (1) 0
82 /o) 2 0
s1 117 0
30 2

Here two roots are +ve (2 changes of sign) and hence the system isunstable.
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3.5. Definition of root loci

The root locus of a feedback system is the graphical representation in the complex s-
plane of the possible locations of its closed-loop poles for varying values of a certain system
parameter. The points that are part of the root locus satisfy the angle condition. The value of
the parameter for a certain point of the root locus can be obtained using the magnitude
condition.

In root locus technique in control system we will evaluate the position of the roots,
their locus of movement and associated information. These information will be used to
comment upon the system performance.

3.6. Analysisusingroot locus plots.

A designer can determine whether his design for a control system meets the specifications if
he knows the desired time response of the controlled variable. By deriving the differential
equations for the control system and solving them, an accurate solution of the system's
performance can be obtained, but this approach is not feasible for other than simple systems.
It is not easy to determine from this solution just what parameters in the system should be
changed to improve the response. A designer wishes to be able to predict the performance by
an analysis that does not require the actual solution of the differential equations.

The first thing that a designer wants to,know about a g stem is whether or not it is
stable. This can be determined by examinin % tauned from the characteristic
equation R

1+ Ga(s) =0 (3.1

,QZ»

O
of the closed loop. The work inv@ in 'determining the roots of this equation can be
avoided by applying the Hurwitz or Routh criterion. Determining in this way whether the
system is stable or unstable does not satisfy the designer, because it does not indicate the
degree of stability of the system, i.e., the amount of overshoot and the settling time of the
controlled variable for a step input. Not only must the system be stable, but the overshoot
must be maintained within prescribed bounds and transients must die out in a sufficiently
short time.

The root-locus method described in this section not only indicates whether a system is stable
or unstable but, for a stable system, also shows the degree of stability. The root locusis a plot
of the roots of the characteristic equation of the closed loop as a function of the gain. This
graphical approach yields a clear indication of the effect of gain adjustment with relatively
small effort.

With this method one determines the closed-loop poles in the splane - these are the roots of
Eq.(5.1) - by using the known distribution of the poles and zeros of the open-loop transfer

_ Gals; . : : - :
function ). If for instance a parameter is varied, the roots of the characteristic equation
will move on certain curves in the splane as shown by the example in Figure 3.1. On these
curveslieall
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4 Doplae ]

- j2

P

20

. . s +2s+p=0 02p<oo
Figure 3.1: Plot of all roots of the characteristic equation for .

Values of “are red and underlined.

possible roots of the characteristic equation for all values of the varied parameter from zero to
infinity. These curves are defined as the root-locus plot of the closed loop. Once this plot is

obtained, the roots that best fit the system, performan ifications can be selected.
Corresponding to the selected roots there is a regui of the parameter which can be
determined from the plot. When tke roots ected, the time response can be
obtained. Since the process of finding\the”rog by ’calculating the roots for various
values of a parameter becomes tedious, a s Am‘ethod of obtaining the root locus is
desired. The graphical method for determi e root-locus plot is shown in the following.

\

An open-loop transfer function With;k;ﬁgtes arthe origin of the splane is often described by

G(s)—K" 1+56is+...48ms™
NS = gk 1418+ .. + ap_ps™k

mn, (3.2

K
where ~ "isthe gain of the open loop. In order to represent this transfer function in terms of
the open-loop poles and zeros it is rewritten as

[T1(s—sz.)
Gols) = ko “——— = kaGl(s) (3.3)
or 11(5 =8P)

=1 = e~ 1745 34
Gals) = ko :—k 5k j—-—k 5 (34
[I (—sr.) [I (1 + — )
3=zl v=1 Py
sp. =0 sp, =0
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. ko >=>1D sz, ¥ Sp, . . ka . Ko
with and . The relationship between the factor — and the open-loop gain
is
1 (~s2,)
- p=1l 1
I\o = ko T 3 . (35)
[T (-s».)
v=1
sp, #0

The characteristic equation of the closed loop using Eq. (5.3) is

14 koG(s) =0 (3.6)
or
Gls)= - (37
Q
s; = si(ka) ) I .. <k
All complex numbers , which fulfil this condition for , represent the
root locus.

phase angle must be an odd multiple the following two conditions are

F.
From the above it can be concluded @t oG( ) must always be unity and its

formalised for the root locus for all positive v% from zero to infinity:

3 QK”

Magnitude condition: 'Q

1

|G =g (3.8)
b)
Angle condition
A , k=0,1,2,...
(s) = arg G(s) = £180°(2k + 1 R (3.9)
¢(s) = arg G(s) ( ) tor ka0
In a similar manner, the conditions for negative values of  ( ) can be

determined. The magnitude conditions is the same, but the angle must satisfy the
c)

Angle condition

g k=10,1,2,...
@(s) = arg G(s) = £k 360° for  EaesDi (3.10)
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Apparently the angle condition is independent of ko. All points of the splane that fulfil the

k
angle condition are the loci of the poles of the closed loop by varying “ . The calibration of

k
the curves by the values of “is obtained by the magnitude condition according to Eq. 8(3.8).
Based upon this interpretation of the conditions the root locus can constructed in a
graphical/numerical way.

G 4
Once the open-loop transfer function ole) has been determined and put into the proper form,
the poles and zeros of this function are plotted in the splane.

e The plot of the locus of the closed loop poles as a function of the open loop gain K,
when K isvaried from 0 to +00.

e When systemgain K isvaried from O to +00, the locusis called direct root locus.

e When systemgain K isvaried from -o0o to O, the locus is called as inverse root locus.

e Theroot locus is always symmetrical about the red axisi.e. x-axis.

e The number of separate branches of the root locus equals either the number of open
loop poles are number of open-loop zeros whichever is greater.

e A section of root locus lies on the real axis if the total number of open-loop poles and

zerosto the right of the section is odd.
inary axis thgf»the point of intersection are
ole th ocus departs making an angle

e |If the root locus intersects the im

conjugate. From the open loop campl
with the horizontal line.
op p 26r0 or infinity.

The root locus starts from op
Theroot locus terminates either
The number of branches of roots |9<,L% A
N if P>Z Cbggf
and M if P<Z ’Q )
where N —> No. of poles _P¢
M —> No. of zeros _Z*

e Centroid isthe centre of asymptotes. It is given by (an)

_IP-3Z
€T N-M

e Angle of asymptotes is denoted by _p

(2K +1)

o= N-M x 180

b Bteakaway/sadclepohllamepolmalwhbhm“ootbcusmoawofmereolam.
To find breakaway point

Pm%=o
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e Angle of departureis. tangent to root locus at complex pole

04 = 180° - (0 — 7). }
Mgieotarwalis!angennomemotlomsatm.conpmzero.
0 = 180° — (97 - ¢p)
Where oz=sumotananuesMendodbyromu\hgzem.
op-sunolallmesswlendedbyremkwpoles.

Based on the pole and zero distributions of an open-loop system the stability of the closed-
loop system can be discussed as a function of one scalar parameter. The root-locus method
shown in this module is a technique that can be used as atool to design control systems. The
basic ideas and its relevancy to control system design are introduced and illustrated. Ten
general rules for constructing root loci for positive and negative gain are shortly presented
such that they can be easily applied. This is demonstrated by some discussed examples, by a
table with sixteen examples and by a comprehensive design of a closed-loop system of higher

order.
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Example Problems:

Q.1. Consider the example
I'\.o ko

Gals) = = -
) = ot " o) e—sm)
. sp, =0 sp,=-2 ko = K .
with , and ° The poles of the closed-loop transfer function
. I\‘o
Gy 2+ 2s+ Ko

S Sa .. .
aretheroots and  of the characteristic equation
P(s)=s"+2s+Kq=0

and are given by
S12= -1+ \1 = I\'o .

sy =sp, =0 Sy = 8p, = —2 g&

As and i it the poles of the closed loop

Ga(s)

transfer function are identical with those oi{}&ben loop transfer function . For other

Ky
values ' the following two cases ar qed
2 .

S Both roots N and = are real and lie on the real axis in the range of
—2<g<-1 -1<0 20
and ;
b)
I\'o :’1. S Sa ReS]_o=—1

3=

Theroots  and are conjugate complex with the real part ,

which does not depend on X, and the imaginary part Im -2 = £V e =1,

The curve has two branches as shown in Figure 6.2.

Figure5.2: Root locus of a simple second-order system

24 |
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(SP], + 5?:),"{2 = _1 . .
At Is the breakaway point of the two branches. Checking the angle

condition the condition

o(s) = arg{G(s)} = arg { s(\s:- 3) } = —arg s —arg(s + 2) = £180°(2k + 1)
. (s+2) ?1 P2
must be valid. The complex numbers sand have the angles and and the
. |s| |s+2| . =l =Ldg . .
magnitudes * " and . The triangle ( ) in Figure 6.2 yields the angle

condition. Evaluating the magnitude condition according to Eg. (6.8)
1 1

S Pl

) K s +1] ) .
one obtainsthe value ~  on the root locus. E.g. for 'the gain of the open loop is

K¢ = IS(S+2)|S=_1 +ij = Ak

K . sp=-1
Thevalueof  at the breakaway point is Q’
K= | =TE149)| =1 3 <
Table 5.1 shows further examples onome 1st- quCDQ er systems.
. 7
Table5.1: Root loci of 1st- Mor ems
PN - -
Gals) [root locus Go(s')(} a root locus
= i N
L U 3
| diw
ko ko % lic,
T |(s+a ) 4w = e — "
t. -J“"l
jw biw
ko ko
&7 o |(s- 8?1,(’ - 5P, ) s, 5 — o
" "
Y
lij_. llj___
ko e | hafe —sz,) e :
§ = 8p, -‘pl (s — ’Pl) I’ZLI - l"?ll '~l; "[-l
i§j-'  jw
kg jut kols — sz, )
L8 o | “F——Tx* D
T g | o) el <lend [ RTRTT
1
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3.7. General rulesfor constructing root loci

To facilitate the application of the root-locus method for systems of higher order than 2nd,
rules can be established. These rules are based upon the interpretation of the angle condition
and the analysis of the characteristic equation. The rules presented aid in obtaining the root
locus by expediting the manual plotting of the locus. But for automatic plotting using a
computer these rules provide checkpoints to ensure that the solution is correct.

Though the angle and magnitude conditions can also be applied to systems having dead time,

in the following we restrict to the case of the open-loop rational transfer functions according
to Eq. (3.3)

sz,)(s—sz,).. . (s—sz.)

Go(s) = ko (s =

. : L kaz0
(s—sp,)(s—sp,)...(s—sp,) g (3.11)

or

;  botbadt.. + by s Ttk g ~ Na(s)
Galis) =% ag+a;s+...+a, s L4s7 ko Dy(s) - (3.12)

sp, sz, v=12...n
As this transfer function can be written ifter fpoles and - ( ;
H= 1,2,. L Gots)
) can be repr@en@ by th r esand angles

ok 5 A |s—szl|e’.'*’~1|s—sz_|e’.r’- |s—s—; | e¥=m

: |s — sp,|&7P1|s — sp,| P2 .. |s — sp_| €¥¥Pn

oW
or ’Q .'

- J(Ys?zk—y‘?r' )
Gals) = ko o \im I (3.13)
]_:[l |s—sz,|

From Eq. (3.8) the magnitude condition
[T |s— szl
u=1l

n

[1 |s—se,|

=L

1
g (3.14)

and from Eg. (3.9) the angle condition

{3) = ‘ - : : =4180°2k+1
o) ;vz, glsap (2k+1) e (3.15)
for
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vz, P, ( (s —sp,
follows. Here and denote the angles of the complex values 3 )and : )

respectively. All angles are considered positive, measured in the counterclockwise sense. If
for each point the sum of these angles in the splane is calculated, just those particular points
that fulfil the condition in Eq. (3.15) are points on the root locus. This principle of
constructing a root-locus curve - as shown in Figure 3.3 - is mostly used for automatic root-
locus plotting.

QY

Figure 3.3 Pole—zero dIBQ r construc@éf the root locus

ko >0
In the following the most important rul con% on of root loci for B are listed:

Rule 1 Symmetry
As all roots are either real Iex conjugate pairs so that the root locus is
symmetrical to the real axis.
Rule 2 Number of branches ‘Q
The number of branches of the root locus is equal to the number of poles nof the
open-loop transfer function.
Rule 3 Locus start and end points

ko=10
The locus starting points ( B ) are at the open-loop poles and the locus ending

(n —m)

ko =

points ( b oo) are at the open-loop zeros. branches end at infinity. The
number of starting branches from a pole and ending branches at a zero is equal to the
multiplicity of the poles and zeros, respectively. A point at infinity is considered as an

equivalent zero of multiplicity equal to
Rule 4 Real axislocus
If the total number of poles and zeros to the right of a point on the real axis is odd,
this point lies on the locus.
Rule 5 Asymptotes

Thereare e asymptotes of the root locus with a slope of

+180°(2k +1
a;;=args=‘—+)~ : (3.16)

n—m
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(n—m)=1,2,3 . . ) :
For : ) and 4 one obtains the asymptote configurations as shown in

Figure 3.4.

I.iw‘
- | (7= ] \ o >

n-m=1 n-m=2 n-m=3 n-m==4
Figure 5.4: Asymptote configurations of the root locus

Rule 6 Real axisintercept of the asymptotes

(05, i0 .
Thereal axis crossing eid )of the asymptotes is at
1 ” m
L p— {Z‘lReSPV—Z;ReSz,_} s (3.17)
= m=

Rule 7 Breakaway and break-in pointion ereal axist,

(e8,0) . .
o% exists if a branch of the root
0S, respectively. Conditions to find
at theif represent multiple real roots. In
ultiple roots the condition

N

At least one breakaway or break-i

such real points are based on
addition to the characteristic equati@;

d , d 7
[+ Ga(s)] = T-Gals) = 0. 'Q<> N (3.18)
must be fulfilled, which is equivalent to
n 1 m 1
3 oy =“X=;S—Sz, (3.19)
for = “E . If thereare no poles or zeros, the corresponding sum is zero.
Rule 8 Complex pole/zero angle of departure/entry
The angle of departure of pairs of poles with multiplicity Fo is
1 = - i
PP pD = E {— le P, + Zl‘r’zﬁ + 180°(2k + 1)¥ (3.20)
= “:
vEp J

and the angle of entry of the pairs of zeros with multiplicity e
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PrpE=—4-3 @z, +3 o, +180° >;+1)}. (3.22)

Rule 9 Root-locus calibration

The labels of the values of can be determined by using

|s—se,|

k@ =

(3.22)

|s —sz, |

[1
=1
m
[1
p=1l

For m = othe denominator is equal to one.
Rule 10 Asymptotic stability

The closed loop system is asymptotically stable for all values of for which the
locus liesin the left-half splane. From the imaginary-axis crossing points the critical

ko..,

values - can be determined.

The rules shown above are for positive vaI ues 9? 6&%\9 to the angle condition of

Eq. (5.10) for negative values of 0so h%b&bemodlfled In the following these
rules are numbered as above but labelled by

Kd\

Rule 3* Locus start and end pomtsAQ

ka=0_7
The locus starting points (. B ) are at the open-loop poles and the locus ending

L — /
points ( ) are a the open-loop zeros. " 7?)branches end at infinity. The
number of starting branches from a pole and ending branches at a zero is equal to the
multiplicity of the poles and zeros, respectively. A point at infinity is considered as an

equivalent zero of multiplicity equal to
Rule 4* Real axislocus
If the total number of poles and zeros to the right of a point on the real axisis even
including zero, this point lies on the locus.
Rule 5* Asymptotes

There are rem asymptotes of the root locus with a slope of

+360°%%
n—m

Qp = args =

(3.23)
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Rule 8 Complex pole/zero angle of departure/entry

The angle of departure of pairs of poles with multiplicity Fo IS

7

vpgn—_—{ Ys?p +Zw + 360 °k} (3.24)

p=l
i )

and the angle of entry of the pairs of zeros with multiplicity "Ze

rz

P2y = — Z 0z, + > @p, £360% 5 . (3.25)
=1

#*e

The root-locus method can also be applied for other cases than varyi ng ? Thisis possible as

G
long as ofs )can be rewritten such that the angle condition according to Eq. (3.15) and the

rules given above can be applied. ThiswiII demonstrated @e following two examples.

Q.2. Given the closed-loop characterlstlc equ %Q"

ag +a1s+... +ap_1s" 45" =D,\/

&Q/

, lar) - o
the root locus for varying the par ' >s§equwed. The characteristic equation is therefore
rewritten as
1 A 2 S,

Qg+ azs? +...+s"
This form then correspondents to the standard form
_ Na(s) _
14+ Go(s)=14a, DotS) 0
to which the rules can be applied. B

Q.3.Given the closed-loop characteristic equation
S+B+a)s’+2s+4=0,
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it isrequired to find the effect of the parameter « on the position of the closed-loop poles. The
equation is rewritten into the desired form
sZ

=0.
s +3s242s+4

l14+a

Using the rules 1 to 10 one can easily predict the geometrical form of the root locus based on
the distribution of the open-loop poles and zeros. Table 3.2 shows some typical distributions
of open-loop poles and zeros and their root loci.

Table 3.2: Typical distributions of open-loop poles and zeros and the root loci

No. root locus No. root locus

ll]w I]“‘
2 > | 10 -

4

4
5
6
7
‘hj;.d
8 A 16
T
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For the qualitative assessment of the root locus one can use a physical analogy. If all open-
loop poles are substituted by a negative electrical charge and all zeros by a commensurate
positive one and if a massless negative charged particle is put onto a point of the root locus, a
movement is observed. The path that the particle takes because of the interplay between the
repulsion of the poles and the attraction of the zeros lies just on the root locus. Comparing the
root locus examples 3 and 9 of Table 3.2 the 'repulsive’ effect of the additional pole can be
clearly seen.

The systematic application of the rules from section 3.2 for the construction of aroot locus is
shown in the following non-trivial example for the open-loop transfer function

.lfo(s + 1)

Gals) = — - - .
ol8) = e o) (e + 1257 10)

(3.26)

The degree of the numerator polynomial is m = 1. This means that the transfer function has

7, =—1 _ i
one zero ( ) ). The degree of the denominator polynomial is n = +and we have the

=0 sp,=-2 sp, =—6+j2 sp, =—6—]j _
four poles ( = , = , . : , - ]2 irst the poles (x) and the
zeros (0) of the open loop are drawn on t@e splane as sho igure 3.5. According to rule
3 these poles are just gé
A

— 1)
-.7.(..-Lp1'|(..n,.1" ko

Gula) = <
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Figure 3.5: Root locus of . Values of are in red and
underlined.

) ko =1 ko — O
those points of the root locus where and the zeros where . We have
(n—m) =

3
branches that go to infinity and the asymptotes of these three branches are lines
which intercept the real axis according to rule 6. From Eq. (3.17) the crossing is at
(0—2—6—6)—(-1) 13

gy == = e (3.27)

and the slopes of the asymptotes are according to Eq. (3.16)

_ +180°(2k +1)

o : = +60°(2k+1) k=0,1,2,... (3.28)

) ag = A0°, a; = +180°, a, = —A/0° .
l.e.

The asymptotes are shown in Figure 3.5 as blue lines. Usi n@le 4 it can be checked which
—-l<o<0
points on the real axis are points on the r8ot lo aWith i and

o'(-)

belong to the root locus, because to th 1 the number of poles and zeros is
odd. According to rule 7 breakaway ts'can only occur pairwise on the real
axisto the left of -2. These points are real sol% he Eq. (3.19). Here we have

1 1 1

—+s+2+s+6—j2+s+ﬁ+j‘2=s+1> (3.29)
’\y)’
or
3s* 4+ 32s° 4+ 1065 + 12854+ 80 =0 .
= —3.68 sp, = —5.47 . = —0.76 £ j0.86A
This equation has the solutions 5 , o and B ! . The real
sp, = —3.68 S, = —5H.47 . . .
roots and are the positions of the breakaway and the break-in point.
©Ps D sp, = —6 +j2
The angle of departure of the root locus from the complex pole at can be
determined from Figure 3.6 according to Eq. (3.20):
PPy D = —90%" - 153 4" — 161 6° + 158 2° + 180°(2k + 1) (3.30)

= —246.8° 4+ 180° = —6A.8° .
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- 7

——

. : ) s =—6+j2
Figure 5.6: Calculating the angle of departure Baa of the complex pole = .
k
With this specifications the root locus can be sketched. Using rule 9 the value of “ can be
determined for some selected points. The value at the intersection with the imaginary axis is
72-74-78-111

ko erit = 738 = f64d4d.

4 <

OUTCOMES:
At the end of the module, theédeéar%&o N
r

» Obtain the time response and steady-ﬁn or of the system.

» Knowledge about improvement of d transient behaviour of a system.

» Determine stability of the variou@ ohsystems by applying Routh’s stability
criterion. v

» Construct root loci from open leop transfer functions of control systems and Analyze
the behaviour of roots with system gain.

» Assessthe stability of closed loop systems by means of the root location in s-plane and
their effects on system performance.

SELF-TEST QUESTIONS:
1. Obtain an expression for time response of the first order system subject to step input.
2. Define
1) Timeresponse.
2) Transient response.
3) Steady state response.
4) Steady state error.
3. Determine the stability of the system whose characteristic equation is given by
S*+6S3+23S%+40S+50=0, Using Routh's criterion.

4. Sketchtheroot locus for G(S)H(S)= K show all detailsonit.
S(S+2)(S+4)

5. Sketchtheroot locus for G(S)H(S)= 10K show all detailson it.
S(S+2)(S+6)
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6. Sketchtheroot locus for G(S)H(S)= K(St+1) show all detailson it.
S(S+2)(S+4)

FURTHER READING:
1. Control engineering, Swarnakiran S, Sunstar publisher, 2018.

2. Feedback Control System, Schaum’s series. 2001.
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MODULE 4
FREQUENCY DOMAIN ANALYSIS

LESSON STRUCTURE
4.1. Nyquist Stability criterion
4.2.  Nyquist criterion using Nyquist plots
4.3. Simplified forms of the Nyquist criterion
4.4. TheNyquist criterion using Bode plots
45. Bode attenuation diagrams
4.6. Stability analysis using Bode plots

OBJECTIVES

» To demonstrate Stability Determine Gain & Phase Margins Medium effort.

» To demonstrate applications of the frequency response to analysis of system stability
(the Nyquist criterion), relating the frequency response to transient performance
specifications.

» To demonstrate frequency r&ponse d to determine |I|ty of control system
applying using Bode plot.

» To demonstrate to plot graph of amplltu pl%sgﬁ/ in the log-log scale and a

phase plot, which |susuallya~%ar; pl

4.1. Nyquist Stability criterion Q/

This graphical method, which ’&oﬁgmally developed for the stability analysis of
feedback amplifiers, is especially smg or:different control applications. With this method
the closed-loop stability analysisis b on the locus of the open-loop frequency response

*9) " Since only knowledge of the frequency response ~°*“is necessary, it is a versatile

practical approach for the following cases:

Go\]w)
a) For many cases ~can be determined by series connection of elements whose parameters

are known.

] ) Galjw)
b) Frequency responses of the loop elements determined by experiments or can be
considered directly.

c) Systems with dead time can be investigated.

Galjw)
d) Using the frequency response characteristic of ~not only the stability analysis, but also the

design of stable control systems can be easily performed.

4.2.  Nyquist criterion using Nyquist plots

To derive this criterion one starts with the rational transfer function of the open loop

36/
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- -

X

X X

» X
AR > - 7
e [7 a

X X

X : X = N

n—P—u /II P n—N-v IV
open loop closed loop

Figure: Poles of the open and closed loop in the splane (multiple poles are counted according to
their multiplicity)

. A G'(jw) =1+ Gol(jw L
To determine "ps, the locus ) o) can be drawn on the Nyquist diagram and

the phase angle checked. Expediently one  moves this curve by 1 to the left in the

Galjw) - . Galjw)
plane. Thus for stability analysis of the closed loop the locus of the open loop

according to Figure 5.5 hasto be drawn.

A iIm[G] 4 jIm[G,]

G' plane G, plane
| o> @ =0
et
Re[ G']
7 (jw)
b 4
G'(juw Galju’
Figure : Nyquist diagrams of ' )and )
Aps. . : N
Here is the continuous change in the angle of the vector from the so called critical point (-1,j0)
Galjw) 0 £w < co
to the moving point on the locus of for . Points where the locus passes through
<o
S
the point (-1,j0) or where it has points at infinity correspond to the zeros and poles of on the
imaginary axis, respectively. These discontinuities are not taken into account for the derivation of .

. Galjw)
Figure shows an example of a
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jIm[ ]

G, plane

tangent

Figure: Determination of continuous changes in the angle

where two discontinuous changes of the angle occur. Thereby the continuous change of the angle
consists of three parts

Apg = Apam + Avep + A¢po

= =1 —(1277 — Q1 —P2) — 2 =2

The rotation is counter clockwise positive.

As the closed loop is only asymptotically st
the Nyquist criterion follows: a

if and nIy@ntinuous change in the angle of the

pe Golies
in@ of the locus o )of the open loop is
Apg= (P +p/2)7 . 0&1 N )

a5

I
For the case with a negative gain “of the open loop the locus isrotated by 180° relative to

lefor N = v =§n<}then from the general case of

The closed loop is asymptotically stab

vector from the critical point (-1,j0) to the m

I
the case with a positive \0. The Nyquist criterion remains valid also in the case of a dead
time in the open loop.

4.3. Simplified forms of the Nyquist criterion

: p=20 Apg =10
It follows from that for an open-loop stable system, that is P =o0and , then .

Therefore the Nyquist criterion can be reformulated as follows:

If the open loop is asymptatically stable, then the closed loop is only asymptotically stable, if
the frequency response locus of the open loop does neither revolve around or pass through
the critical point (-1,j0).

ais
Another form of the simplified Nyquist criterion for Ol*s)with poles a s = 0isthe so caled
'left-hand rule'”:
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The open loop has only poles in the left-half splane with the exception of a single or double

I,
poleat s=0(P,1 or ~behaviour). Inthis case the closed loop is only stable, if the critical

Goljuw’
point (-1,j0) is on the left hand-side of the locus 9 in the direction of increasing values of

o
wo.

This form of the Nyquist criterion is sufficient for most cases. The part of the locus that is
significant is that closest to the critical point. For very complicated curves one should go back to
the general case. The left-hand rule can be graphically derived from the generalised locus

The orthogonal ( ) net is observed and asymptotic stability of the closed loop is given, if
acurve W|th passes through the critical point (-1,j0). Such a curve is always on the left-

G,
hand side of <44,

4.4. TheNyquist criterion using Bode plots

Because of the simplicity of the graphical construction of the frequency response
characteristics of a given transfer function the application of the Nyquist criterion is often

. . : A
more simple using Bode plots. The contlnuous change of the angle ®of the vector from

the critical point (-1,j0) to the locus of ust be ex by the amplitude and phase
Galjw)

response of . From figure \

=1 jIm[G,] 4 & + = ] j Im[(]“] 4

C- =1 C-=2

+ _l O —>0 ) —> 0
> .
R‘(?[ (l-'(]] R‘(E[ (1-'“]

s ok

( ;} KR w)
Gyljw)

Galjw]
Figure : Positive (+) and negative (-) intersections of the locus £ )With the real axis on

the left-hand side of the critical point

it can be seen that this change of the angle is directly related to the count of intersections of

(o0, 1)

the locus with the real axis on the left-hand side of the critical point between . The
Nyquist criterion can therefore also represented by the count of these intersections if the gain
of the open loop is positive.

. . : Goljw) o (—o0,—1)
Regarding the intersections of the locus of with the real axis in the range ,

the transfer from the upper to the lower half plane in the direction of increasing w values are
treated as positive intersections while the reverse transfer are negative intersections

39|



Control Engineering -15SM E73 _ 2018

(Figure 5.7). The change of the angle is zero if the count of positive intersections s+isequal

A
to the count of negative intersections S—. The change of the angle (’Jsdepends also on the
number of positive and negative intersections and if the open loop does not have poles on the
imaginary axis, the change of the angle is
Apg=2x(Ct-C7).
In the case of an open loop containing an integrator, i.e. a single pole in the origin of the complex

p=1 6 —joo +7/2
plane ( ), the locus starts for w = Oat , Where an additional is added to the

change of the angle. For proportional and integral behaviour of the open loop

Apg=2n(CtY —C7)+pm/2 p=0,1

p=2
is valid. In principle this relation is also valid for , but the locus starts forat w =10
—co + jé
(Figure 5.8), and this intersection would be counted
\ai j Im| G'“]“ j [111[(7“]4
C =0
=] 0 >0 —1 0 —> 0
o Re[G | Re[ G ]
g6 =1
C= =1/2

open loop

=1
A%
/ % I2
Figure : Count of the intersections on Wnd s%sg the critical point for  behaviour of the

6>10 .
as a negative one if ,i.e.if the locus f@au'w is in the upper half plane of the real axis. But

6>10 6<0

de facto there is for (and accor& ) no intersection. This follows from the detailed
investigation of the discontinuous change of the angle, which occurs at w = 0. As only a continuous
change of the angle is taken into account and because of reason of symmetry the start of the locus

6<0 6=>10
at w = 0is counted as a half intersection, positive for and negative for , Which is

analogous to the definition given above For continuous changes of the angle

Apg = 27(CT —-C7) (p=2)

Gols)
The open loop with the transfer function = Jhas Ppoles in the left-half splane and possibly a

_ p=1 p=2 Ga(jw) »
single ( ) or double pole ( ) at s=10. If the locus of has C't positive and C~

negative intersections with the real axis to the left of the critical point, then the closed loop is
only asymptotically stable, if
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7]
is valid. For the special case, that the open loop is stable (P =10, ), the number of positive and
negative intersections must be equal.

From thisit follows that the difference of the number of positive and negative intersectionsin
=0,1 . =2 : . . .
thecaseof - isan integer and for “7 "ot an integer. From this follows immediately,
0,1 _ =2 P+1 .
that for ©~ ' the number Pis even, for “™ “the number is uneven and therefore in

all cases Pis an even number, such that the closed loop is asymptotically stable. This is only

* =

Dt >
vaidif
The Nyquist criterion can now be transferred directly into the representation using frequency
response characteristics. The magnitude response Aol

ol , Is aways positive at the intersections of the locus with the real axis in the range of

B, which corresponds to the locus

(—oo,—1 . . . .
X ). These points of intersection correspond to the crossings of the phase response

walw) . . +180° 4+540° _ ) o
with lines , etc., i.e. auneven multiple of 180°. In the case of a positive

. . +(2k 4 1) 180°
intersection of the locus, the phase response at the lines crosses from below to

top and reverse from top to below on a negative intersection as shown in Figure 5.9. In the
following these crossings

‘40(.“") 1

<

I
| |
| : .
‘rju{“") 4 : ! '
O 1 | -
| ! ,17
I | W
+ |
—180° - T A - N - - - -
Go(jiw) = Ag(w) &)
Figure : Frequency response characteristics of and definition of positive (+)

|w')

Pal
and negative (-) crossings of the phase response with the -180° line

will be defined as positive (+) and negative (-) crossings of the phase response o] over the

+(2k + 1) 180° k=10,1,2,...
particular lines, where may be valid. If the phase response starts at -
180° this point is counted as a half crossing with the corresponding sign. Based on the discussions
above the Nyquist criterion can be formulated in a form suitable for frequency response

characteristics:

Gals)
The open loop with the transfer function "~ has Ppoles in the right-half splane, and possibly a

single or double pole at s = 0. C"t are the number of positive and €'~ of negative crossings of the
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woliw) +(2k + 1) 180° Ag(w)ap > 0
phase response over the lines in the frequency range where is

valid. The closed loop is only asymptotically stable, if

N }—; for p =10,1
¥ y — T =
Dt¥=Ct-C Pyl
— forp=2
2
- . p=10
is valid. For the special case of an open-loop stable system (P =10, )

Dt=Ct—C~ =0
must be valid.

Table 7.1: Examples of stability analysis using the Nyquist criterion with frequency response
characteristics

No Bode Do am SLalaly A s hels

5+ w1
L s D:‘-__-:1 } w D' = P2 uaxtable
P -2

St e 32
2 — [;-.V_-ll - D - idla ke ot
P ol 2 plew 1n
the oagmn
A4 T
| \ - 5+ =0
3 Valwl T j'\ - ;" ot v D' % P31 uxatable
o y= D" == —|

z > P o]
L L e T -; ------

0
n
0

%997

Q

} s D" - P/2 atakde

Finally the 'left-hand rule' will be given using Bode diagrams, because this version is for the
most cases sufficient and simple to apply.

The open loop has only poles in the left-half splane with the exception of possibly one single or one

I
multiple pole at s=0(P, 1 or behaviour). In this case the closed loop is only asymptotically stable,

_ Galjw) o > —180° we Ao(we)a =0
if has a phase of for the crossover frequency  at .

This stability criterion offers the possibility of a practical assessment of the 'quality of
stability' of a control loop. The larger the distance of the locus from the critical point the
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farther is the closed loop from the stability margin. As a measure of this distance the terms
gain margin and phase margin are introduced according to Figure below

L. AitmlC
1 fﬁ;_ ] Illl[( (l] (a) A(j(“")(IB“ (b)
/ \
wp
0 = 3
/ . NG
wg” G Re[G] ' :

i 9’7(1(*46)

L

(;(l (JW') 180%-F = ===== ’_J(_ vy,

. . . PC Ap  Apg . . o
Figure : Phase and gain margin  and or , respectively, in the (a) Nyquist diagram and (b)

Bode diagram

Example Problems:

Q1 Thepolar plot of the open-loop transter of feedback control system intersectsthe
real axis at—2 Calculate gain margin (in dB) of the syster%

Ans. Given a = -2
Gain margin = 20 logyg -I;—l

= 20 logyq 10.5I
gain margin = -6.02 dB.

Q2. What isthe gain margin of a system in decibelsif its Nyquist plot cutsthe negative
real axisat — 0.7?

Ans.
=—0.7
. 1
gain margin = -20 log,g F—
. 47,
= =20 logso [07]

gain margin = -3 dB.

Q4. Consider a feed lock system with the open-loop transfer function. Given by

c K
(s) = s(2s+1)
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Examine the stability of the closed-loop system. Using Nyquist stability theory

K
Ans. G(s)H(s) = s@s+1)

mmmsno.-%.mmhdmu\dmhu—l.Bunopohlsalm

2
‘a" O‘ "m wﬂ_, +
p P=0

For stability,
N=Z-P
Z=P4+N — ‘$R'
N = Number of clockwise =

enrichment about (~1 + j0)

As there is no enrichment, 80 N = 0 [
Z=0+0

=0

Thus systern is stable.

W=041

Q 5. Draw the Nyquast1 plot for the open loop transfer fur@'/on given below:
SeNuieyx s 1+2$)(1+sj A}

and obtain the gain margin and phéimar j t% ¢
. ” - <
1

Ans. Given G (s) H (s) = s(+2s)(1+8)

Puts = jw ;i

- 1
G (o) H () = 1003 B j0) (1 +)w)
Rationalizing

| ‘ 3 ¥ 1-20°
G (jo) H (jw) = (1+4<o2) (sz) @ (1+4002)(1 +w2)

Equating imaginary parts to zero, real axis intersection is at
1-20?2 =0
w = 0.707
IG (jo) H (jo)lj.707 = 0.68
Nyquist plot is as shown :

—180"
140

44



Control Engineering -15SM E73 _ 2018

Q6. Consider afeed lock system with the open-loop transfer function. Given by

K
)= s(2s+1)
Examine the stability of the closed-loop system. Using
Nyquist stability theory.

K
Ans. G(s)H(s) = s(@s+1)
1 1
Hmpobsams-o.-i.mpobbdodgharumbu-a.Bumopobbamyl
alf of s-plane. W01 t
. P=0
For stability,
N=Z-P
Z=P+N . *A,
N = Number of clockwise -1
enrichment about (-1 + j0) -
As there is no enrichment, 5o N = 0 o
Z =0+°
=0

W=041

Thus system is stable.
) Q,@

Q7. Sketch the Nyquist plot for the system wj %eﬂlooptransferfunction

K N
(o ) (0 +18) (j0+2) Qfo a
and determine therange of K for whi system is
K
Ans. Given G (s) H (s) = (s+1) (s+1.5) (s+2)

Put S =]a) ‘

s K
@ (o) H (o) = o553 18) (57 2)
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Rationalizing and separating real and imaginary parts

-,_ (1+m2}(?.25+w2)(4+w2) - (1+m2) (2.25+c02) (4“+m2)

(3-4.50)2)K gy 1K(6.5m,-m3)

To get point of intersection on real axis, equate imaglnary part to zero.
K (&5» -0
D
(1+a%) (225 +a%)(s+o°)

w = 2.55 rad/sec
IG (jo)l o2 =024 K
Intersection with imaginary axis :

’3
W= 2-5 = 0.81

For stability ~0.028 K < —1
1 K < 35.03.
The plot is as shown below :

=0

gle

Q.8. Sketch the Nyquist plot for system with

(1+05s)
's2(1+01s) (1+0.025)

Comment on the stability.

G(s)H(s) =
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Ans. G (s)H jaraty
EHE) = 215 a1e) (1+.0029)
Put S =jo
(1+05jw)
G H =
e (ko) (1401 o) (1 + 0.02j0)

The mapping for Nyquist contour is as follow.
Along jo axis for various values of w, G (jw) H (jw) is plotted,

© 0 = 0.1 1.0 2.0 4.0 100  20.00

14025 o?
w? Jl +00102 J1+0.000402

where IG (jo) H (jo)! =

£G (ko) H (Jo) = tan~' 0.5 © — 180° ~ tan-! 0.1 @ — tan~! 0.02 w

Point of intersection of G (ju) H (jo)
Z£G (jw) H (o) = -180* + tan~! 0.5 © ~ 180° - tan~' 0.1 ® - tan™! 0.02 w
= 180" s %4

tan' 05w =1am' 0.1 w+tan' 002 ®

A (01) (w + m;o)
1-0002 »

(1-0002 @) (05w)=01w+002wm
05w~0001?=0120
0.38 = 0.001 @?
o = 19.49 rad/sec

14J025 x 1949 -
IG (o) H (010,09 = =
O 0Nomrase = 0T (1+ 101 x 1949) (1 + 10002 % 1949)

1+48725)
5 (1%9?(1 +1.949 j) (1+ 00389 j)
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The plot is as shown below :

-0

There is no encirclement of 1 + jO, hence system is stable.

Q 9. How isit possible to make assessment of relative stability using Nyquist criterion?
Construct Nyquist plot for the system whose open loop transfer function is

K(1+ s)2 ' Q/
G(s) H (s) =
s° Find therange of K &%{
Ans. Co
&re

e Nyquigt critierion can be used to ent of relative stability.
e Using the characteristic equati; Nqust plot isdrawn. A feedback system is

sable if and only if, the i.e. celt inthe G (s) plane does not encircle the (—1,
0) point when the number of pales of G(s) in the right hand s plane is zero.
e |If G (@) hasP polesintheright hand plane, then the number of anticlockwise
encirciements of the (—1, 0) point must be equal to P for a stable system,
=—P0
where N = No of clockwise encirclements about (—1, 0) point in C (9)
plane PO = No of polesG (s) inRHP 0

2
14 '
Now given G (s) H (s) = ﬂ——%ﬂ~
s
No. of poles at RHS of s-plane P =0

For stabllity N = O .
- Nyquist path is shown @

Forpatha —-d,puts =jw, 0 < @ < =
w =0, G (jo) H (jo) = = ~—270°
w = e, G (Jw) H (j®) = 0 Z—90°
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Rotational angle = -90° — (270°) = 180° anticlockwise
. Polar plot is shown by dark circle in following figure.

Draw mirror image for path  — i (in previous figure) path d — @ — 1 will e ongin
As term - s present, there will be three semicircies of = rads.
s

Or

Start point

At w =0 (Le.pt 7) G (Ju) H (ju) = = £270°
End point o =-0 (lLe. pt 'a") G (jo) H (Ju) = = £-270"
Mence plot & e SPown Delow

H 1

2
N

49|
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45. Bode attenuation diagrams

Alw) o(w) Gljw) = A(w) eV )
If the absolute value = "and the phase " of the frequency response

are separately plotted over the frequency w, one obtains the

A(w)? (a) Alw) A (b)
30 20 A
20) 10 %
(] 1 L) L] LI AL B | ] ] ”lll'l»
10 A 10401 1 fs] \m
() T T T T 1‘-“}= -2{) i
2 4 6[Y8 10 A
rasey | ) oA w =1
I & s L L B
-90° - 904
180° 180°
27()0_ 27()0'

Figure 6.1: Plot of a frequency response: (a) linear, (b) I@'ithmic presentation (w on a
logarithmic scale) (Bode plot) N

amplitude response and the phase response.

ot &her are the frequency response

characteristics. ¥ )and warenormally %gar‘thm and o) with alinear scale.

. Alw
This representation is called a Bode diagr@BQde plot. Usually : )Wi|| be specified in
decibels [dB] By definition thisis 0 O

A(w)as = 20log)q A(w) [dB] . ’Q’
Alw)ar

The logarithmic representation of the amplitude response has consequently a linear
scale in this diagram and is called the magnitude.

4.6. Stability analysis using Bode plots:

e The magnitude and phase relationship between sinusoidal input and steady state
output of a system is known as frequency response.

e Thepolar plot of asinusoidal transfer function G (jw) is plot of the magnitude of G
(jw) versus the phase angle of G (jw) on polar coordinates as _co* varied from zero to
infinity.

e The phase margin is that amount, of additional phase lag at the gain crossover
frequency required to bring the system to the verge of instability.

e Thegain margin isthe reciprocal of the magnitude | G(jw) | at the frequency at which
the phase angle as _1800.

e Theinverse polar plot a G (jw) isagraph of 1/G (jw) as a function of w.

e Bode plot is a graphical representation of the transfer function for determining the
stability of control system.

e Bode plot isacombination of two plot - magnitude plot and phase plot
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The transfer function having no poles and zeros in the right -half s-plane are called
minimum phase transfer function.

System with minimum phase transfer function are called minimum phase systems.
The transfer function having poles and zeros in the right half s-plane are called non-
minimum phase transfer functions systems with non-minimum phase transfer
function. are called non-minimum phase system.

In bode plot the relative stability of the system is determined from the gain margin
and phase margin. .

If gain cross frequency is less than phase cross over frequency then gain margin and
phase margin both are positive and system is stable.

If gain cross over frequency is greater than the phase crossover frequency than both
gain margin and‘phase margin are negative.

It gain cross over frequency is equal to me phase cross over trequency me gain marg
and phase margin are zero and system is marginally stable.

The maximum value of magnitude is known as resonant peak.

The magnitude of resonant peak gives the information about the relative stability of
the system.

The frequency at which magnitude has maximum value is known as resonant
frequency.

Bandwidth is defined a the range of frequencies in which the magnitude of closed
loop does not drop —3 db.

Example Problems: X&Q’

Q1. Sketch the Bode Plot for thetran fu gwen by,

G(s) H(s) = 2 (s+0.25)/s2 (s+1) (c+0.5)
and from Plot find (a) Phase and Galr@)ss rer frequenues(b) Gain Margin and Phase
Margin. Isthis System Stable? ,Q

Ans. Given G (s) H (8) =

Put

2(s +0.25)
s2 (s+1)(s+05)

2x025[ s
05 (025

sz(s+1) [5—5—-;1]

1(4s+1)
s?(s+ 1) (2s+1)

5 = jw
(j4w +1)

(jw2) (jeo +1) (2je> +1)

G (jo) H (jw) =
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1his is type 2 system, hence inial siope of bode piot = -40 di/decade and the piot
ntersects 0 dB axis at o = JK = /1 = 1 rad/sec. The comer frequencies are :

i HHHERGE :
) « - 4
2 : s r T
Fu- - 3 s 4
o0 ’ P_* ) F‘ g s ‘L: s 3 r 4 1
o%l - >diis83 : :
T . FReSSOASSERES 8
20 £t 8
- 2r3%aes {» : ' 338
] T $ TSt e S 4141 S8281
. . S8 S8 23 s2832s
““4 40, db/devade | : H i
A0~ > \AsE2 =5 111 ol
2051 i = ik s188 SEEE83NES
- s“ 2 13- 2 ESs
°~ : = ey = 3
: T 13 A z
53 TS .’W.po'“!‘:r
re R
259 83 £338 ; T T b g
e : ] ; ; 334 b
. : £ i 1 ERRSE
-t =1 - gis
1 '] 8+ | 213 3 4 2
=150 SRS [ 4 11 28 - s
ronngver s 1
~100~ v §2323
111 4 HE | 3144 u I a!,H |
=0 gl : : A
g TE=isnss : z
—2e0" 23 3 25 83 22
! 1 i T ‘.l‘lm i 8
o o os 1 ald 10 100
-
1
0=z = 0.25 rad/sec
et |
W= 5 = 0.5 rad/sec
w = 1 rad/sec,

Frequency range Is considered from © = 0.1 rad/sec 10 © = 10 rad/sec.
The plot is as shown.

As initial siope of plot is ~40 dB/dec and comer frequency s 0.25 rad/sec. The plot after
w = 0.25 has slope = —20 dB/dec.

After = 0.5, slope is —40 dB/decade
After o = 1, slope is ~60 dB/déc.

Phase Angle :
£G (jw) H (jw) = tan" (4w) ~ 180° ~ tan~! © - tan™! 2.
The phase angle for frequency range considered are calculated as :
® 0.1 0.25 0.5 1 5

ZG(jo)H (o) ~-1752  -1752 -188 -212.4 -225
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The gain crosses Odb axis at co = 1.24 rad/sec, the gain crossover frequency isco =

1.24 rad/sec.

The phase crosses —180° line at co = 0.4 rad/sec, therefore phase crossover frequency
isco = 0.4 rad/sec.

At phase cross over the gain is 20 dB, therefore gain margin is —20 dB.

At gain crossover the phase angle is 2150, the phase margin is 180° + (—215°) = —35°.
As both gain and phase margins are negative, the system is unstable.

Q3. Sketch the bode plot for thetransfer function given by

237 (1+jo) (1+ 02j)
(jo) (14 3jo) (1+05jo) (1+ 01 jo)

G(s)=

and from plot find gain margin and phase margin.

Ans.

On 0)-axis mark the point a 23.7 rad/sec. since in denominator (jw) term is having power
one, from 23.7 draw a line of slope —20 db/decade to meet y-axis. This will be the starting
point.

Step 1.

From the starting point to | corner freque}cy (O.

Q

From | corner frequency (0.33) to sec

oy (1) the slope of the line will be —
20 + (—20) = —40 db/decade. o

<
ﬁ%f the line is —20 db/decade.

A

From Il corner frequency to IV corner f@a.x(é} the slope of the line be —40 + (+20) =

—20 R db/decade.
From 111 corner frequency to 1V corr:gequency, the slope of line will be —20 + (—20) =
—40 db/decade.

From IV corner frequency (5) to V corner frequency the slope will be —40 + (+20) = —20
db/decade.

After V corner frequency, the slope will be (—20) + (—20) = —40 db/decade.

Step 2.
Draw the phase plot.

Step 3.

From graph

Phase margin = +34°
Gain margin =infinity
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L]
G o) H o) = LG +7) (j006@ + 1) °

Ans. Advantages of Bode Plot :
Ploase refer to Q. No. 1 (i) of May 2009.

K

A G () H (o) = 0 e +1) (106@ + 1)
Comer frequencies are
1

01
= 10 rad/sec
© = 505
= 20 radisec
Draw magnitude pilol without K.
For phase piot
w Arg jo Arg (1+j0.1) | Arg (1 +)0.050) | Resuitant
® 92 e P thath
4 -80° -21.8" -11.3° -123.1°
6 -80* -30.96" -16.69° -137.65°
] -90° -38.56° | -218° ~150.36*
10 -80° -45" -26.56° w—i 61.56°
12 -90° -50.19° -30.96", | -171.48°
< -80* -54 46" -35¢ = -179.48°
' -90° -60.9° -42° | -1929°
_Zj -90° -63.43° .. -45* -108.43° o
AQ s»\\
© |-tan! jo | ~tan~! 30 |-tan~! 050 | ~tan~! 0.1@ | tan~! @ | tan~! 20 | Resultant
01 -80* -16.7° -2.86* -0.57* +5.71* 1.14° -103*
0.2 ~90° ~-31* -5.71° -1.14* +11.3° 2.3 -114.25"
05 -90* -56,3° -14.03° -2.86° +26.56* | 571" -130.92°
o8 -90* ~-§7.4° -21.8° -4 .57¢ +38.65 | 9.09° -136.03°
1.0 -90° -71.56° -26.56° -5.71* +45° 113 -137.5°
20 -80" -80.54° -45° -11.3° +6343"| 218" -141.61°
53 ~80* -86.18° -68.19° -26.56* +78.7° 45° -147.23°
L -80* -87.61° -76° -38.65 |+8287* 58* -151.39°
0| -80° -88" ~78.7¢ -45° +84.3"° 63.4° -154.0"
£, -90° ~-89° -84.3° -63.43° | +87.13° 76° -163.6°
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OUTCOMES:
At the end of the module, the students are able to:

To Determine Gain & Phase Margins effect.

Applications of the frequency response to analysis of system stability (the Nyquist
criterion), relating the frequency response to transient performance specifications.
Determine stability of control system applying Nyquist stability criterion and using
Bode plot.

Plot a graph of amplitude plot, usually in the log-log scale and a phase plot, which is
usually alinear-log plot.

Y V VYV

SELF-TEST QUESTIONS:
1. Apply Nyquist stability criterion for the system with transfer function
G(SH(9)= K find the stability.
S(S+2)(S+4)

2. The open loop transfer function of asystemis given by G(S)H(S) = __10(S+10) .
S(5+2)(S+5)
Draw Bode diagram, Find Gain cross over frequency (GCF), Phase cross over
frequency (PCF), Gain margin (GM), Phase margin (PM). Find stability of the

system.
3. The open loop transfer function of a system is given by
G(9H(9) = 50K
S(S+10)(S+6)(S+1)
Draw Bode diagram, Find Gain cross,over frequency#GCF), Phase cross over
frequency (PCF), Gain margin (GJI), mar, ). Find the value of K to

have GM =10 decibels. g&
FURTHER READING: CO \

1. Control engineering, Swarn %Sunstar publisher, 2018.

2. Feedback Control Systegi™\StHaum’s series. 2001.
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MODULE 5

SYSTEM COMPENSATION AND STATE VARIABLE
CHARACTERISTICSOF LINEAR SYSTEMS

LESSON STRUCTURE:

5.1. Introduction:

5.2. System Compensation

5.3. Basic Characteristics of Lead, Lag and Lag-L ead Compensation:
5.4. Lag Compensator

5.5. Lead Compensator

5.6. Lag-Lead Compensator

5.7. Introduction to state concepts:

5.8. Matrix representation of state equations

5.9. Statecontrollability

5.9.1. Kalman test for gat controllﬁ?y
5.9.2. Gilbert'stest for state rggfly lity
OBJECTIVES: QfO ‘

e-of the system, we use compensating networks.
the system in the form of feed forward path gain

» Inorder to obtain the desired perf
Compensating networks are apph
adjustment.

» Todemondrate to compensate a unstable system to make it stable.

» Todemonsrate State controllability.

5.1. Introduction:

Automatic control systems have played a vital role in the advancement of science and
engineering. In addition to its extreme importance in sophisticated systems in Space vehicles,
missle- guidance, aircraft navigating systems, etc., automatic control syssem as become an
important and integral part of manufacturing and industrial processes. Control of process
parameters like pressure, temperature, flow, viscosity, speed, humidity, etc., in process
engineering and tooling, handling and assembling mechanical parts in manufacturing industries
among others in engineering fiedd where automatic control systems are inevitable part of the

system.
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A control system is designed and constructed to perform specific functional task. The
concept of control system desgn darts by defining the output variable( Speed, Pressure,
Temperature Etc.,) and then determining the required specification ( Stability, Accuracy, and
speed of response). In the design process the designs must first select the control Media and then
the control e ements to meet the designed ends.

In actual practice severa alternative can be analyzed and a final judgment can be made an
overall performances and economy.

Systems have been categorized as manual and automatic systems. Based on the type of
control needed most systems are categorized as - Manual & Automatic. In applications where
systems are to be operated with limited or no supervision, then systems are made automatic and
where system needs supervision the system is desgned as manual. In the present-day context
most of the sysems are designed as automatic systems for which one of the important
cond derations was economics. However, the necessty for the system to be made as an automatic
system isto make sure that the system performs with no scope for error which otherwiseis prone
to a lot of errors especially in the operatigns. Other clas'gd
input and output relationships. Accordingly, in S&&Loop Control System the output is
independent of the input and in a closed ontr &&Iemthe output is dependant on the input.

n of a sysem is based on the

The term input refers to reference variable anQ} utput is referred to as Controlled variable.
Most of the systems are designed as clo ) systems where a feedback path with an element
with atransfer function would help in Jritigingthe relationship between the input and the output.

A system can be represented by the block diagram and from a s imple to a complicated
system, reduction techniques can be used to obtain the overall transfer function of the system.
Overall sysem Transfer function can also be obtained by another technique usng signal flow
analyss where the transfer function of the system is obtained from Mason*s gain formula. Once
the system is designed, the response of the system may be obtained based on the type of input.
Thisis sudied in two categories of response namely response of the systemic time domain and
frequency domain. The system thus conceived and designed needs to be analyzed based on the
same domains. At this stage the systems are studied from the point of view of its operational
features like Stability, Accuracy and Speed of Response. Development of various systems have
been continuous and the history of the same go back to the old WATTS
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Speed Governor, which was consdered as an effective means of speed regulation. Other control
system examples are robot arm, Missle Launching and Guidance System, Automatic Aircr aft
Landing System, Satellite based digital tracking systems,etc to name a few. In the design of the
control systems, three important requirements are consdered namey STABILITY,
ACCURACY and SPEED OF RESPONSE.

Stable Systems are those where response to input must reach and maintain some useful
value with in a reasonabl e period of time. The designed systems should both be Unstable
Systems as ungtable control systems produce persistent or even violent oscillations of the output
and output will be driven to some extreme limiting value.

Systems are also designed to meet certain levels of Accuracy. Thisis a relative term with limits
based upon a particular application. A time measurement system may be from a simple watch to
a complicated system used in the sports arena. But the levels of accuracy are different in both
cases. One used in sports arena must have very high leves of sophigtication and must be reliable
showing no signs of variations. However, this feature of the system is purely based on the system
requirement. For a conceived, designed and déve oped system@p higher the levels of Accuracy
expected, higher isthe Cost. \;

gﬂVSPEED OF RESPONSE. System must
complete its response to some input within‘an gt%jable period of time. System has no value if

The third important requirement\com

the time required to respond fully to some% isfar greater than the time interval between

inputs ‘Q
5.2. System Compensation
Compensation is the minor adjustment of a sysem in order to satisfy the given

specifications. Specification refers to the objective of a system to perform and obtain the
expected output after the system is provided with a proper input. Some of the needs o f the

system compensation are as specified.

5.3. Basic Characteristics Of Lead, Lag And L ag-L ead Compensation:
RS — c(S)

—/ >

\ £ compeNsATOR PLAN T
AN

FEEDBACK BEEEMENF
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Lead compensation essentially yields an appropriate improvement in transent resonse and a
small imrovement in steady state accuracy. Lag compensation on the other hand, yields an
appreciable improvement in steady state accuracy ast the expense of increasing theh transent
responsetime. Lag- lead compensation combines the characterisitcs of both lead compensation
and lag compensation. The use of alag- lead compensator raises the order of the system by two
(unless cancdllation occurs between the zeroes of the lag- lead network and the poles of the
uncompensated open- loop transfer function), which means that the system becomes more
complex and it is more difficult to control the transent response behavior. The particular
dtuation determines the type of the compensation to be used.

5.4. Lag Compensator

The Lag Compensator isan electrical network which producesa snusoidal output having the
phase lag when a sinusoidal input is applied. The lag compensator circuit in the ‘s’ domain is

shown in the following figure.
& {")Q/
oY —
+ R, L +
R, $
vi(s) Gl vi(s)
sC T
h 4

Here, the capacitor isin serieswith the resistor R2 and the output is measured across this
combination.

Thetransfer function of thislag compensator is—

Vala) 1 & JF !
Vis) o }l

From the above equation, o is always greater than one. We know that, the phase of the output
snusoidal signal is equal to the sum of the phase angles of input sinusoidal signal and the

59|



Control Engineering -15SME73 | 2018

transfer function. So, in order to produce the phase lag at the output of this compensator, the
phase angle of the transfer function should be negative. This will happen when o>1.

5.5. Lead Compensator

Thelead compensator isan e ectrical network which producesa sinusoidal output having phase
lead when a sinusoidal input isapplied. The lead compensator circuit in the ‘s’ domain is shown
in the following figure.

L/sC

LMW r

|
<
vi(s) B2 u(e)

Here, the capacitor is paralld to the resistor R1and the output is measured across resistor
$R_2. Thetransfer function of thislead compensator is—

N 0.
Vol# ( gr+1 )
— -1
':. |:.F:| 5T 4 I_
Wheare,
r=MC
K
e K
Ry + Ha

b 4

We know that, the phase of the output sinusoidal signal isequal to the sum of the phase
angles of input sinusoidal signal and the transfer function. nSo, in order to produce the phase
lead at the output of this compensator, the phase angle of the transfer function should be positive.
This will happen when 0<f<1. Therefore, zero will be nearer to origin in pole-zero
configuration of the lead compensator.

5.6. Lag-Lead Compensator

Lag-L ead compensator isan dectrical network which produces phase lag at one frequency
region and phaselead at other frequency region. It isa combination of both the lag and the lead
compensators. Thelag-lead compensator circuit in the ‘s’ domain is shown in the following
figure.
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1/2€;
e AANS
+ <y £ +
R, é
vi(s) (] Vo(s)

This circuit looks like both the compensators are cascaded. So, the transfer function of this
circuit will be the product of transfer functions of the lead and the lag compensators.

lf:'l::i.:'__:?.ril'i)l ,F:.Tl:r__\]
Vilel " \Bm+l)al s+

We know alf = 1.
¥ i - 1 1
- .[-nlhll . ( ] I ? ) (E | E )
Alal oL L L
Vile) T e J N2 o

L= R]{:'l

Where,

7y = Rl

A P 2EN
5.7. Introduction to state con@% N

As we know from previous chapters&ation of control system can be broadly classfied as
Classcal method and Modern methods. For Simple Input Output (SIO) systems classical method
can be eadly adopted and can be analysed by devel oping mathematical models. But for Multiple
Input Multiple Output (MIMO) systems classical methods was quite difficult to analyse and it
was time consuming since classical method analyss one loop at a time. Hence Modern method
came into exisence where the system under consderation can be analysed in time domain
format. Modern methods which involves direct time domain analyss and also provides a bass
for system optimization is known as state variable approach. State variable models are basically
time domain models which involve the analys's and study of linear and nonliner, time invariant
or time varying multi input multi output control system.

Some of the advantages of state variablesanalysis are

a. It can be applied to non linear system
b. It can be applied to time invariant system
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c. It can be applied to multiple input multiple output system
d. It givesthe idea about theinternal state of the system.

5.8. Matrix representation of state equations

Letus consider block diagram representing the state model for a linear, continnous Sme
comiTol system as chown in figars.

= Dt

u(t) —L = BT} Jdr L2 C(t) | . ¥it)
_|.

Al [=—

Thus the derivative of each state variable can be expressed in terms of linear combination
of system states and impuat as

Ey=—8,X +4a, X 4+ ..+a X +bu+b. o +  .+b, _u_

Ey =8, K +8 K +....+38, X +b,x +b,u +b, u +_.+b, ua_

-

I\._I—'__"f__‘—\_JI

Xy =@ X +38 X +..+3 X +b un+b nu + . =b _u_

where the coefficient a, and b, are constants. Thus the above set of equations can be
represanted in maimix form as belowr

_ x L1}
X ayy A5 T I h'.'. bl: s b'.n I
- Ea i,
Xa - a dn sem By |F + b:l bz s h':n i "-'.:I
- a, 4., .. a ]| b, b, .. bm
| x: B l_xl B _uﬂ_

Theabove egquation can berednced in matmix Som known as"stateegquation”

®(t)=ax(t)+BU(t)|—=(3)

where  3{{) = Derivatrve of state vector of order (nx 1)
(1) = State vector mamix of order (o x 1)
{7} = Imput vector matrix of order (m x 1)
A = System matrix or evelution matmix of order o x
B = Input mairix or confrel mairix of order (o x m)

Similarly the onipuat varnables can be sxpressed as linear combinations of the state variahbles
and inpuat variakles at tme 't" can be expressad as
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Tf1 {”=C|1K| I:t:l+'|::::K:{t}—.+{:::"xn [t]+d'|ZUZ ':.t}_duU: “}_---d'l.-uUz 'Ixt}
e

v, (1) =Cox (t)+ex, (1) +. C x, (t)+d, U, (t)+d,, U, (t)+..+d U_(t).(a)

where the coefficients C; and d, are constants. Thus the above equation can be
expressed in matriv form as follows,

- [x(t)] (o, (1) ]
.1": 1 ‘:'IZ ':IE i ':Ir. :K:I:.'.b 2” :'I: e :'I:u llz{t:l
Vo | [€y €y .o C .ood. ood, .
Sl 21 Fir} 2 || i " 21 e Tm ) |5'
v, €, Co - Tl . d, d. ... d,
%l Lo =, () v o ()

The above equation can be reduced in matrix from known as output equation
[¥(t)=CX(t)+Du(t)| .(6)
where,
Y( t) = COutput vector matrix of crder(p x 1)
C =Output matrix of order (p X 0)
D=Transmission matrix of order (p x 11)

In control system analysis, we must in %Woconditi ons for deciding output of a
system does the solution of the control system exi \noi. They are

. ) Q,Q/
5.9. Statecontrollability: gé

1. Isit possible to transfer the system un@hsi\deration from any initial state to desired state
by the application of suitable control f;@ h.the specified time?

2. Isit possible to determine the initial stats of the system if the output vector is known for a
finite length of time.

The answer for these questions can be justified by using state controllability and observability.
Hence, controllability can be defined as,

The system is said to be completely controllableif it is possible to transfer the system state from
any initial state x(t0) to any other desired state x(tf) in a specified finite time interval (t0 <t <tp)
by unconstrained control vector U(T).

Otherwise the system is not completdy state controllable.

Consder a multipleinput linear time invariant system represented by its State equations as

X(t) = AX(t)+ BU(t)

where, A is(n x n) order state matrix
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B is(n x m) order input matrix
U(t) is (mx1) input vector
X(t) is(nx 1) state vector
The gtate controllability tests can be performed by two methods, they are

1. Kalman's test for controllability : This method is applicable for any matrix A either matrix
A iscanonical form or otherwise.

2. Gilberth's test for controllability : This method isbased on converting the matrix A into the
diagonal canonical form and later it is used to determine the state controllability of the system.

5.9.1. Kalman test for state controllability
If the nth order multiple input linear timeinvariant system represented by state equation as
AX(t) + BU(Y)

where A is (n x n) order matrix then contrtﬁabnn {r\xgg)’of the szen (nx m) can be given

[B AB A2 ..... ‘An 1B]

The systemis said to be controllableif th
determined of order (n x n) of any sub
controllability matrix (Qc) islessthan

f the controllability matrix (Qc) is'n’' then the
onc has non zero value. Alsoif the rank of the
en the system is not compl etely state controllable.
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5.9.2. Gilbert'stest for state controllability

Consider a state model of linear time invanant system
X(t)=AX(t)+BU(t)
Y(t)=CX(t)+DU(t)
where: A B, C.D statespace model

Case 1 : If matrix A is an diagonal canonical form, then the transformation matrix is the
dentity matrix (T = I) also then If (A, =A B . B. C, = C. d = d).Gilbert controllability
can be stated as the system with distinct eigen values is completely state controllable 1if and
only if no zero eleemnt 1s presented in the transpose B matrixie |

B=T'B (D
Case 2 : If matrix A is a not in diagonal canonical form following steps are followed.
Step 1 : Find eigen value of matrix A

le. A I—A|=0

where I=Identity matrix
Step 2 : Find the transformation matrix

Develop vander mode matnx of A which will be used as transformation matrix.

1 1 1 1]

/P PO T
T=V=|% %3 & .. 2. | knownasvandermondematrix.

T A A L

Step 3 : Find the transformed matrix (A B, . C, . D) of the diagonal cancnical form as
below,

A, =T! AT => Diagonal matrix

B,=T'B

C, CT

D,=D
Step 4 : If no row of has zero elements, the system is completely state

controllable.
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OUTCOMES:

At the end of the module, the students are abl e to:

> obtain the desired performance of the system, we use compensating networks.

Compensating networks are applied to the system in the form of feed forward path gain
adjustment.

» Differentiate different types of compensators.
» Concepts of state controllability.

SELF-TEST QUESTIONS:

1.

© No Ok

FURTHER READING: ,§ >
[

Define compensators. What isthe need of compensatorsin a system.
Explain with a sketch Lag compensator.

Explain with a sketch Lead compensator.

Explain with a sketch Lag-L ead compensator.

Explain basic components of Lag - L ead compensator.

Obtain State model for the equation y + 3y + 2y +y = r(t).
Obtain State model for the equation 'y + 6y + 12y + 8y = 3U(t).

Find the controllability of linear dynamic time invariant system by Kalman’s

controllability test. Q/
. &2
X—Fl _] +‘E)h@‘
iC\tifhe invariant sysem by Gilberth

Find the controllability of \linear a%s,

controllability test. .
e
o ZiFee ]

ran S, Sunstar publisher, 2018.
2. Feedback Control System, Schaum’s series. 2001.

1. Control engineering, Swarn
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